Towards Improved Privacy in Digital Marketing: A Unified Approach to User Modeling with Deep Learning on a Data Monetization Platform

Bhuvi Chopra, Vinayak Raja
{"title":"Towards Improved Privacy in Digital Marketing: A Unified Approach to User Modeling with Deep Learning on a Data Monetization Platform","authors":"Bhuvi Chopra, Vinayak Raja","doi":"10.60087/jaigs.v4i1.130","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative method for safeguarding user privacy in digital marketing campaigns through the application of deep learning techniques on a data monetization platform. This framework empowers users to maintain authority over their personal data while enabling marketers to pinpoint suitable target audiences. The system consists of several key stages Data representation learning in hyperbolic space captures latent user interests across various data sources with hierarchical structures. Subsequently, Generative Adversarial Networks generate synthetic user interests from these embedding. To preserve user privacy, Federated Learning is utilized for decentralized user monetization, Data privacy, modeling training, ensuring data remains undisclosed to marketers. Lastly, a hyperbolic embedding, Federated learning targeting strategy, rooted in recommendation systems, utilizes learned user interests to identify optimal target audiences for digital marketing campaigns. In sum, this approach offers a comprehensive solution for privacy-preserving user modeling in digital marketing.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"41 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v4i1.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an innovative method for safeguarding user privacy in digital marketing campaigns through the application of deep learning techniques on a data monetization platform. This framework empowers users to maintain authority over their personal data while enabling marketers to pinpoint suitable target audiences. The system consists of several key stages Data representation learning in hyperbolic space captures latent user interests across various data sources with hierarchical structures. Subsequently, Generative Adversarial Networks generate synthetic user interests from these embedding. To preserve user privacy, Federated Learning is utilized for decentralized user monetization, Data privacy, modeling training, ensuring data remains undisclosed to marketers. Lastly, a hyperbolic embedding, Federated learning targeting strategy, rooted in recommendation systems, utilizes learned user interests to identify optimal target audiences for digital marketing campaigns. In sum, this approach offers a comprehensive solution for privacy-preserving user modeling in digital marketing.
提高数字营销中的隐私保护:数据货币化平台上的深度学习用户建模统一方法
本文介绍了一种创新方法,通过在数据货币化平台上应用深度学习技术,在数字营销活动中保护用户隐私。该框架使用户能够保持对其个人数据的控制权,同时使营销人员能够准确定位合适的目标受众。该系统由几个关键阶段组成 在双曲空间中进行数据表示学习,捕捉各种数据源中具有层次结构的潜在用户兴趣。随后,生成对抗网络(Generative Adversarial Networks)根据这些嵌入生成合成用户兴趣。为了保护用户隐私,联邦学习(Federated Learning)被用于分散的用户货币化、数据隐私、建模训练,确保数据不会泄露给营销人员。最后,以推荐系统为基础的双曲嵌入、联邦学习目标定位策略利用学习到的用户兴趣来确定数字营销活动的最佳目标受众。总之,这种方法为数字营销中的隐私保护用户建模提供了全面的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信