{"title":"Dynamics of Vortex Structures: From Planets to Black Hole Accretion Disks","authors":"E. P. Tito, Vadim I. Pavlov","doi":"10.3390/dynamics4020021","DOIUrl":null,"url":null,"abstract":"Thermo-vortices (bright spots, blobs, swirls) in cosmic fluids (planetary atmospheres, or even black hole accretion disks) are sometimes observed as clustered into quasi-symmetrical quasi-stationary groups but conceptualized in models as autonomous items. We demonstrate—using the (analytical) Sharp Boundaries Evolution Method and a generic model of a thermo-vorticial field in a rotating “thin” fluid layer in a spacetime that may be curved or flat—that these thermo-vortices may be not independent but represent interlinked parts of a single, coherent, multi-petal macro-structure. This alternative conceptualization may influence the designs of numerical models and image-reconstruction methods.","PeriodicalId":507568,"journal":{"name":"Dynamics","volume":"73 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics4020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thermo-vortices (bright spots, blobs, swirls) in cosmic fluids (planetary atmospheres, or even black hole accretion disks) are sometimes observed as clustered into quasi-symmetrical quasi-stationary groups but conceptualized in models as autonomous items. We demonstrate—using the (analytical) Sharp Boundaries Evolution Method and a generic model of a thermo-vorticial field in a rotating “thin” fluid layer in a spacetime that may be curved or flat—that these thermo-vortices may be not independent but represent interlinked parts of a single, coherent, multi-petal macro-structure. This alternative conceptualization may influence the designs of numerical models and image-reconstruction methods.