Towards good modelling practice for parallel hybrid models for wastewater treatment processes

Loes Verhaeghe, Jan Verwaeren, Gamze Kirim, S. Daneshgar, Peter A. Vanrolleghem, E. Torfs
{"title":"Towards good modelling practice for parallel hybrid models for wastewater treatment processes","authors":"Loes Verhaeghe, Jan Verwaeren, Gamze Kirim, S. Daneshgar, Peter A. Vanrolleghem, E. Torfs","doi":"10.2166/wst.2024.159","DOIUrl":null,"url":null,"abstract":"\n This study explores various approaches to formulating a parallel hybrid model (HM) for Water and Resource Recovery Facilities (WRRFs) merging a mechanistic and a data-driven model. In the study, the HM is constructed by training a neural network (NN) on the residual of the mechanistic model for effluent nitrate. In an initial experiment using the Benchmark Simulation Model no. 1, a parallel HM effectively addressed limitations in the mechanistic model's representation of autotrophic bacteria growth and the data-driven model's incapability to extrapolate. Next, different versions of a parallel HM of a large pilot-scale Water Resource Recovery Facility are constructed, using different calibration/training datasets and different versions of the mechanistic model to investigate the balance between the calibration effort for the mechanistic model and the compensation by the NN component. The HM can improve predictions compared to the mechanistic model. Training the NN on an independent validation dataset produced better results than on the calibration dataset. Interestingly, the best performance is achieved for the HM based on a mechanistic model using default (uncalibrated) parameters. Both long short-term memory (LSTM) and convolutional neural network (CNN) are tested as data-driven components, with a CNN HM (root-mean-squared error (RMSE) = 1.58 mg NO3-N/L) outperforming an LSTM HM (RMSE = 4.17 mg NO3-N/L).","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"20 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores various approaches to formulating a parallel hybrid model (HM) for Water and Resource Recovery Facilities (WRRFs) merging a mechanistic and a data-driven model. In the study, the HM is constructed by training a neural network (NN) on the residual of the mechanistic model for effluent nitrate. In an initial experiment using the Benchmark Simulation Model no. 1, a parallel HM effectively addressed limitations in the mechanistic model's representation of autotrophic bacteria growth and the data-driven model's incapability to extrapolate. Next, different versions of a parallel HM of a large pilot-scale Water Resource Recovery Facility are constructed, using different calibration/training datasets and different versions of the mechanistic model to investigate the balance between the calibration effort for the mechanistic model and the compensation by the NN component. The HM can improve predictions compared to the mechanistic model. Training the NN on an independent validation dataset produced better results than on the calibration dataset. Interestingly, the best performance is achieved for the HM based on a mechanistic model using default (uncalibrated) parameters. Both long short-term memory (LSTM) and convolutional neural network (CNN) are tested as data-driven components, with a CNN HM (root-mean-squared error (RMSE) = 1.58 mg NO3-N/L) outperforming an LSTM HM (RMSE = 4.17 mg NO3-N/L).
废水处理工艺并行混合模型的良好建模实践
本研究探讨了为水和资源回收设施(WRRF)制定并行混合模型(HM)的各种方法,该模型融合了机械模型和数据驱动模型。在这项研究中,HM 是通过在出水硝酸盐机理模型的残差上训练神经网络 (NN) 来构建的。在使用基准模拟模型 1 进行的初步实验中,并行 HM 有效地解决了这一问题。在使用基准模拟模型 1 的初步实验中,并行 HM 有效地解决了机理模型在表示自养细菌生长方面的局限性以及数据驱动模型无法进行推断的问题。接下来,利用不同的校准/训练数据集和不同版本的机理模型,构建了一个大型中试规模水资源回收设施的不同版本并行 HM,以研究机理模型的校准工作与 NN 组件的补偿之间的平衡。与机理模型相比,HM 可以改进预测结果。与校准数据集相比,在独立验证数据集上训练 NN 能产生更好的结果。有趣的是,基于使用默认(未校准)参数的机理模型的 HM 性能最佳。长短期记忆(LSTM)和卷积神经网络(CNN)都作为数据驱动组件进行了测试,CNN HM(均方根误差(RMSE)= 1.58 毫克 NO3-N/L)优于 LSTM HM(RMSE = 4.17 毫克 NO3-N/L)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信