Kexin Zhang, Caihui Yu, Hongbin Wang, Xianghong Li
{"title":"Multiscale Effects of Predator–Prey Systems with Holling-III Functional Response","authors":"Kexin Zhang, Caihui Yu, Hongbin Wang, Xianghong Li","doi":"10.1142/s021812742450072x","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a Holling-III predator–prey model considering the perturbation of slow-varying, carrying capacity parameters. The study aims to address how the slow changes in carrying capacity influence the dynamics of the model. Based on the bifurcation theory and the slow–fast analysis method, the existence and the equilibrium of the autonomous system are explored, and then, the critical condition of Hopf bifurcation and transcritical bifurcation is established for the autonomous system. The slow–fast coupled nonautonomous system has quasiperiodic oscillations, single Hopf bursting oscillations, and transcritical–Hopf bursting oscillations within a certain range of perturbation amplitude variation if the carrying capacity perturbation amplitude crosses some critical values, such that the predator–prey management is challenging for the extinction of predator populations under the critical value. The motion pattern of the nonautonomous system is closely related to the transcritical bifurcation, Hopf bifurcation and attractor type of the autonomous system. Finally, the effects of changes in parameters related to predator aggressiveness on system behavior are investigated. These results show how crucial the predator–prey control is for varying carrying capacities.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021812742450072x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we proposed a Holling-III predator–prey model considering the perturbation of slow-varying, carrying capacity parameters. The study aims to address how the slow changes in carrying capacity influence the dynamics of the model. Based on the bifurcation theory and the slow–fast analysis method, the existence and the equilibrium of the autonomous system are explored, and then, the critical condition of Hopf bifurcation and transcritical bifurcation is established for the autonomous system. The slow–fast coupled nonautonomous system has quasiperiodic oscillations, single Hopf bursting oscillations, and transcritical–Hopf bursting oscillations within a certain range of perturbation amplitude variation if the carrying capacity perturbation amplitude crosses some critical values, such that the predator–prey management is challenging for the extinction of predator populations under the critical value. The motion pattern of the nonautonomous system is closely related to the transcritical bifurcation, Hopf bifurcation and attractor type of the autonomous system. Finally, the effects of changes in parameters related to predator aggressiveness on system behavior are investigated. These results show how crucial the predator–prey control is for varying carrying capacities.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.