{"title":"A Vector Representation of Multicomplex Numbers and Its Application to Radio Frequency Signals","authors":"D. Borio","doi":"10.3390/axioms13050324","DOIUrl":null,"url":null,"abstract":"Hypercomplex numbers, which are multi-dimensional extensions of complex numbers, have been proven beneficial in the development of advanced signal processing algorithms, including multi-dimensional filter design, linear regression and classification. We focus on multicomplex numbers, sets of hypercomplex numbers with commutative products, and introduce a vector representation allowing one to isolate the hyperbolic real and imaginary parts of a multicomplex number. The orthogonal decomposition of a multicomplex number is also discussed, and its connection with Hadamard matrices is highlighted. Finally, a multicomplex polar representation is provided. These properties are used to extend the standard complex baseband signal representation to the multi-dimensional case. It is shown that a set of 2n Radio Frequency (RF) signals can be represented as the real part of a single multicomplex signal modulated by several frequencies. The signal RFs are related through a Hadamard matrix to the modulating frequencies adopted in the multicomplex baseband representation. Moreover, an orthogonal decomposition is provided for the obtained multicomplex baseband signal as a function of the complex baseband representations of the input RF signals.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"37 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hypercomplex numbers, which are multi-dimensional extensions of complex numbers, have been proven beneficial in the development of advanced signal processing algorithms, including multi-dimensional filter design, linear regression and classification. We focus on multicomplex numbers, sets of hypercomplex numbers with commutative products, and introduce a vector representation allowing one to isolate the hyperbolic real and imaginary parts of a multicomplex number. The orthogonal decomposition of a multicomplex number is also discussed, and its connection with Hadamard matrices is highlighted. Finally, a multicomplex polar representation is provided. These properties are used to extend the standard complex baseband signal representation to the multi-dimensional case. It is shown that a set of 2n Radio Frequency (RF) signals can be represented as the real part of a single multicomplex signal modulated by several frequencies. The signal RFs are related through a Hadamard matrix to the modulating frequencies adopted in the multicomplex baseband representation. Moreover, an orthogonal decomposition is provided for the obtained multicomplex baseband signal as a function of the complex baseband representations of the input RF signals.