{"title":"ARCnet: A Multi-Feature-Based Auto Radio Check Model","authors":"Weijun Pan, Yidi Wang, Yumei Zhang, Boyuan Han","doi":"10.3390/aerospace11050391","DOIUrl":null,"url":null,"abstract":"Radio checks serve as the foundation for ground-to-air communication. To integrate machine learning for automated and reliable radio checks, this study introduces an Auto Radio Check network (ARCnet), a novel algorithm for non-intrusive speech quality assessment in civil aviation, addressing the crucial need for dependable ground-to-air communication. By employing a multi-scale feature fusion approach, including the consideration of audio’s frequency domain, comprehensibility, and temporal information within the radio check scoring network, ARCnet integrates manually designed features with self-supervised features and utilizes a transformer network to enhance speech segment analysis. Utilizing the NISQA open-source dataset and the proprietary RadioCheckSpeech dataset, ARCnet demonstrates superior performance in predicting speech quality, showing a 12% improvement in both the Pearson correlation coefficient and root mean square error (RMSE) compared to existing models. This research not only highlights the significance of applying multi-scale attributes and deep neural network parameters in speech quality assessment but also emphasizes the crucial role of the temporal network in capturing the nuances of voice data. Through a comprehensive comparison of the ARCnet approach to traditional methods, this study underscores its innovative contribution to enhancing communication efficiency and safety in civil aviation.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Radio checks serve as the foundation for ground-to-air communication. To integrate machine learning for automated and reliable radio checks, this study introduces an Auto Radio Check network (ARCnet), a novel algorithm for non-intrusive speech quality assessment in civil aviation, addressing the crucial need for dependable ground-to-air communication. By employing a multi-scale feature fusion approach, including the consideration of audio’s frequency domain, comprehensibility, and temporal information within the radio check scoring network, ARCnet integrates manually designed features with self-supervised features and utilizes a transformer network to enhance speech segment analysis. Utilizing the NISQA open-source dataset and the proprietary RadioCheckSpeech dataset, ARCnet demonstrates superior performance in predicting speech quality, showing a 12% improvement in both the Pearson correlation coefficient and root mean square error (RMSE) compared to existing models. This research not only highlights the significance of applying multi-scale attributes and deep neural network parameters in speech quality assessment but also emphasizes the crucial role of the temporal network in capturing the nuances of voice data. Through a comprehensive comparison of the ARCnet approach to traditional methods, this study underscores its innovative contribution to enhancing communication efficiency and safety in civil aviation.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.