Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems

Pub Date : 2024-05-14 DOI:10.1093/jigpal/jzae070
Álvaro Michelena, Francisco Zayas-Gato, Esteban Jove, J. Casteleiro-Roca, Héctor Quintián, Oscar Fontenla-Romero, José Luis Calvo-Rolle
{"title":"Novel adaptive approach for anomaly detection in nonlinear and time-varying industrial systems","authors":"Álvaro Michelena, Francisco Zayas-Gato, Esteban Jove, J. Casteleiro-Roca, Héctor Quintián, Oscar Fontenla-Romero, José Luis Calvo-Rolle","doi":"10.1093/jigpal/jzae070","DOIUrl":null,"url":null,"abstract":"\n The present research describes a novel adaptive anomaly detection method to optimize the performance of nonlinear and time-varying systems. The proposal integrates a centroid-based approach with the real-time identification technique Recursive Least Squares. In order to find anomalies, the approach compares the present system dynamics with the average (centroid) of the dynamics found in earlier states for a given setpoint. The system labels the dynamics difference as an anomaly if it rises over a determinate threshold. To validate the proposal, two different datasets obtained from a level control plant operation have been used, to which anomalies have been artificially added. The results shown have determined a satisfactory performance of the method, especially in those processes with low noise.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present research describes a novel adaptive anomaly detection method to optimize the performance of nonlinear and time-varying systems. The proposal integrates a centroid-based approach with the real-time identification technique Recursive Least Squares. In order to find anomalies, the approach compares the present system dynamics with the average (centroid) of the dynamics found in earlier states for a given setpoint. The system labels the dynamics difference as an anomaly if it rises over a determinate threshold. To validate the proposal, two different datasets obtained from a level control plant operation have been used, to which anomalies have been artificially added. The results shown have determined a satisfactory performance of the method, especially in those processes with low noise.
分享
查看原文
用于非线性和时变工业系统异常检测的新型自适应方法
本研究介绍了一种新型自适应异常检测方法,用于优化非线性和时变系统的性能。该建议将基于中心点的方法与实时识别技术递归最小二乘法(Recursive Least Squares)相结合。为了发现异常,该方法将当前的系统动态与在给定设定点的早期状态下发现的动态的平均值(中心点)进行比较。如果动态差异超过确定的阈值,系统就会将其标记为异常。为了验证该建议,我们使用了从液位控制设备运行中获得的两个不同数据集,并人为地添加了异常值。结果表明,该方法的性能令人满意,尤其是在噪音较低的过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信