Modified Detour Index of Hamiltonian Connected (Laceable) Graphs

K. G. Nagarathnamma, Leena N Shenoy, S. Krishna
{"title":"Modified Detour Index of Hamiltonian Connected (Laceable) Graphs","authors":"K. G. Nagarathnamma, Leena N Shenoy, S. Krishna","doi":"10.17485/ijst/v17i19.1033","DOIUrl":null,"url":null,"abstract":"Objectives: To explore the bounds for the modified detour index of certain Hamiltonian connected and laceable graphs. Methods: The Wiener index , detour index and the modified detour index are used. Findings: Here we introduce the modified detour index and its least upper bounds for Hamiltonian connected and laceable graphs, by formulating the constraints. Novelty: Based on the modified detour index, the bounds for some special graphs such as: Hamiltonian connected graphs of two families of convex polytopes ( and ) and Hamiltonian laceable graphs of spider graph ( ) and image graph of prism graph ( ) are encountered here. Keywords: Hamiltonian graph, Hamiltonian connected, Hamiltonian laceable, Wiener index, detour index","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"33 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i19.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To explore the bounds for the modified detour index of certain Hamiltonian connected and laceable graphs. Methods: The Wiener index , detour index and the modified detour index are used. Findings: Here we introduce the modified detour index and its least upper bounds for Hamiltonian connected and laceable graphs, by formulating the constraints. Novelty: Based on the modified detour index, the bounds for some special graphs such as: Hamiltonian connected graphs of two families of convex polytopes ( and ) and Hamiltonian laceable graphs of spider graph ( ) and image graph of prism graph ( ) are encountered here. Keywords: Hamiltonian graph, Hamiltonian connected, Hamiltonian laceable, Wiener index, detour index
哈密顿连通(可蕾丝)图的修正迂回指数
研究目的探索某些哈密顿连通图和可花边图的修正迂回指数的边界。方法: 使用维纳指数、迂回指数和修正迂回指数:使用维纳指数、迂回指数和修正迂回指数。研究结果在此,我们通过提出约束条件,介绍了哈密顿连通图和可蕾丝图的修正迂回指数及其最小上界。新颖性:基于修正的迂回指数,我们给出了一些特殊图的边界,如和 )的哈密顿连通图,以及蜘蛛图( )和棱柱图( )的哈密顿可蕾丝图。关键词哈密顿图、哈密顿连通图、哈密顿可花边图、维纳指数、迂回指数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信