Revealing More Hidden Attractors from a New Sub-Quadratic Lorenz-Like System of Degree 6 5

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Haijun Wang, Jun Pan, Guiyao Ke
{"title":"Revealing More Hidden Attractors from a New Sub-Quadratic Lorenz-Like System of Degree 6 5","authors":"Haijun Wang, Jun Pan, Guiyao Ke","doi":"10.1142/s0218127424500718","DOIUrl":null,"url":null,"abstract":"In the sense that the descending powers of some certain variables may widen the range of parameters of self-excited and hidden attractors, this technical note proposes a new three-dimensional Lorenz-like system of degree [Formula: see text]. In contrast to the previously studied one of degree [Formula: see text], the newly reported one creates more hidden Lorenz-like attractors coexisting with the unstable origin and a pair of stable node-foci in a broader range of parameters, which confirms the generalization of the second part of the celebrated Hilbert’s 16th problem once more. In addition, some other dynamics, i.e. Hopf bifurcation, the generic and degenerate pitchfork bifurcation, invariant algebraic surface, first integral, singularly degenerate heteroclinic cycle with nearby chaotic attractor, ultimate bounded set and existence of a pair of heteroclinic orbits, are discussed.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the sense that the descending powers of some certain variables may widen the range of parameters of self-excited and hidden attractors, this technical note proposes a new three-dimensional Lorenz-like system of degree [Formula: see text]. In contrast to the previously studied one of degree [Formula: see text], the newly reported one creates more hidden Lorenz-like attractors coexisting with the unstable origin and a pair of stable node-foci in a broader range of parameters, which confirms the generalization of the second part of the celebrated Hilbert’s 16th problem once more. In addition, some other dynamics, i.e. Hopf bifurcation, the generic and degenerate pitchfork bifurcation, invariant algebraic surface, first integral, singularly degenerate heteroclinic cycle with nearby chaotic attractor, ultimate bounded set and existence of a pair of heteroclinic orbits, are discussed.
从新的度数为 6 的次二次洛伦兹-类系统中揭示更多隐藏的吸引力 5
由于某些变量的降幂可能会扩大自激和隐性吸引子的参数范围,本技术论文提出了一种新的度[公式:见正文]三维洛伦兹样系统。与之前研究的[公式:见正文]度的洛伦兹系统相比,新报告的洛伦兹系统在更宽的参数范围内产生了更多与不稳定原点和一对稳定结点共存的隐藏洛伦兹样吸引子,这再次证实了著名的希尔伯特第 16 问题第二部分的概括性。此外,还讨论了其他一些动力学问题,即霍普夫分岔、一般和退化的杈形分岔、不变代数曲面、第一积分、奇异退化异次元循环与附近的混沌吸引子、终极有界集和一对异次元轨道的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信