AN EFFICIENT SPECTRAL METHOD FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS

IF 1.6 3区 数学 Q1 MATHEMATICS
ZhiPeng Liu, Dongya Tao, Chao Zhang
{"title":"AN EFFICIENT SPECTRAL METHOD FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS","authors":"ZhiPeng Liu, Dongya Tao, Chao Zhang","doi":"10.3846/mma.2024.18354","DOIUrl":null,"url":null,"abstract":"For Volterra integro-differential equations (VIDEs) with weakly singular kernels, their solutions are singular at the initial time. This property brings a great challenge to traditional numerical methods. Here, we investigate the numerical approximation for the solution of the nonlinear model with weakly singular kernels. Due to its characteristic, we split the interval and focus on the first one to save operation. We employ the corresponding singular functions as basis functions in the first interval to simulate its singular behavior, and take the Legendre polynomials as basis functions in the other one. Then the corresponding hp-version spectral method is proposed, the existence and uniqueness of solution to the numerical scheme are proved, the hp-version optimal convergence is derived. Numerical experiments verify the effectiveness of the proposed method.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.18354","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For Volterra integro-differential equations (VIDEs) with weakly singular kernels, their solutions are singular at the initial time. This property brings a great challenge to traditional numerical methods. Here, we investigate the numerical approximation for the solution of the nonlinear model with weakly singular kernels. Due to its characteristic, we split the interval and focus on the first one to save operation. We employ the corresponding singular functions as basis functions in the first interval to simulate its singular behavior, and take the Legendre polynomials as basis functions in the other one. Then the corresponding hp-version spectral method is proposed, the existence and uniqueness of solution to the numerical scheme are proved, the hp-version optimal convergence is derived. Numerical experiments verify the effectiveness of the proposed method.
弱奇异核非线性伏特拉积分微分方程的高效谱法
对于具有弱奇异内核的 Volterra 微分方程(VIDE),其解在初始时是奇异的。这一特性给传统数值方法带来了巨大挑战。在此,我们研究了具有弱奇异内核的非线性模型解的数值近似方法。由于弱奇异核的特性,为了节省操作,我们将区间拆分并集中于第一个区间。我们在第一个区间采用相应的奇异函数作为基函数来模拟其奇异行为,在另一个区间采用 Legendre 多项式作为基函数。然后提出了相应的 hp-version 光谱法,证明了数值方案解的存在性和唯一性,并得出了 hp-version 最佳收敛性。数值实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信