{"title":"Residual Carrying Capacity Evaluation and Parking Orbit Replanning for Lunar Exploration Launch Vehicle","authors":"Cong Wang, Jinbo Wang, Zhengyu Song","doi":"10.1007/s42423-024-00154-2","DOIUrl":null,"url":null,"abstract":"<div><p>To cope with the potential thrust-drop malfunction of the manned lunar exploration launch vehicle, a parking orbit replanning method is proposed based on the evaluation of the residual carrying capacity of the launcher. By analyzing the constraints of the whole flight profile and the characteristics of the Earth–Moon transfer orbit systematically, the offline trajectory planning algorithm exhibits improved convergence performance, and thus can be used to evaluate the residual carrying capacity as thrust-drop happens. For the situations that the launcher is not capable of injecting the transfer orbit, a sequential orbit/trajectory replanning method is designed to guarantee the safety of the astronauts. On the premise of ensuring the altitude of the parking orbit, the elements about the orbital plane are further optimized to provide a favorable initial state for the subsequent rescue action. Meanwhile, the nonlinearity of the terminal constraints is alleviated by the injection point forecast, and the initial reference is generated by convex optimization method with well convergence; thus, the solving efficiency of the sequential replanning algorithm can be improved. Simulation results show the proposed method can generate the trajectory that transport the spacecraft to the optimal parking orbit under the thrust-drop malfunction situation. This is an English translated version of “Residual Carrying Capacity Evaluation and Parking Orbit Re-planning for Lunar Exploration Launch Vehicle”.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"7 1","pages":"65 - 78"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-024-00154-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To cope with the potential thrust-drop malfunction of the manned lunar exploration launch vehicle, a parking orbit replanning method is proposed based on the evaluation of the residual carrying capacity of the launcher. By analyzing the constraints of the whole flight profile and the characteristics of the Earth–Moon transfer orbit systematically, the offline trajectory planning algorithm exhibits improved convergence performance, and thus can be used to evaluate the residual carrying capacity as thrust-drop happens. For the situations that the launcher is not capable of injecting the transfer orbit, a sequential orbit/trajectory replanning method is designed to guarantee the safety of the astronauts. On the premise of ensuring the altitude of the parking orbit, the elements about the orbital plane are further optimized to provide a favorable initial state for the subsequent rescue action. Meanwhile, the nonlinearity of the terminal constraints is alleviated by the injection point forecast, and the initial reference is generated by convex optimization method with well convergence; thus, the solving efficiency of the sequential replanning algorithm can be improved. Simulation results show the proposed method can generate the trajectory that transport the spacecraft to the optimal parking orbit under the thrust-drop malfunction situation. This is an English translated version of “Residual Carrying Capacity Evaluation and Parking Orbit Re-planning for Lunar Exploration Launch Vehicle”.