The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0

M. Di Bacco, Daniela Molinari, A. R. Scorzini
{"title":"The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0","authors":"M. Di Bacco, Daniela Molinari, A. R. Scorzini","doi":"10.5194/nhess-24-1681-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Accurate flood damage modelling is essential to estimate the potential impact of floods and to develop effective mitigation strategies. However, flood damage models rely on diverse sources of hazard, exposure and vulnerability data, which are often incomplete, inconsistent or totally missing. These issues with data quality or availability introduce uncertainties into the modelling process and affect the final risk estimations. In this study, we present INSYDE 2.0, a flood damage modelling tool that integrates detailed survey and desk-based data for enhanced reliability and informativeness of flood damage predictions, including an explicit representation of the effect of uncertainties arising from incomplete knowledge of the variables characterising the system under investigation.\n","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"111 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/nhess-24-1681-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Accurate flood damage modelling is essential to estimate the potential impact of floods and to develop effective mitigation strategies. However, flood damage models rely on diverse sources of hazard, exposure and vulnerability data, which are often incomplete, inconsistent or totally missing. These issues with data quality or availability introduce uncertainties into the modelling process and affect the final risk estimations. In this study, we present INSYDE 2.0, a flood damage modelling tool that integrates detailed survey and desk-based data for enhanced reliability and informativeness of flood damage predictions, including an explicit representation of the effect of uncertainties arising from incomplete knowledge of the variables characterising the system under investigation.
多源数据对改进洪水灾害建模的价值,以及明确的输入数据不确定性处理:INSYDE 2.0
摘要准确的洪水损害模型对于估计洪水的潜在影响和制定有效的减灾战略至关重要。然而,洪水损失模型依赖于不同来源的灾害、风险和脆弱性数据,而这些数据往往不完整、不一致或完全缺失。这些数据质量或可用性问题给建模过程带来了不确定性,并影响最终的风险估算。在本研究中,我们介绍了 INSYDE 2.0,这是一种洪水灾害建模工具,它整合了详细的调查数据和案头数据,以提高洪水灾害预测的可靠性和信息量,包括明确表示由于对所调查系统的特征变量了解不全面而产生的不确定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信