Creating value added nano silicon anodes from end-of-life photovoltaic modules: recovery, nano structuring, and the impact of ball milling and binder on its electrochemical performance
{"title":"Creating value added nano silicon anodes from end-of-life photovoltaic modules: recovery, nano structuring, and the impact of ball milling and binder on its electrochemical performance","authors":"Akhil Nelson, Srikanth Mateti, Ying Chen, Neeraj Sharma, Qi Han, Md Mokhlesur Rahman","doi":"10.20517/energymater.2024.04","DOIUrl":null,"url":null,"abstract":"Recovery of silicon from end-of-life photovoltaic (PV) modules, purification, conversion to nano silicon (nano-Si), and subsequent application as an anode in lithium-ion batteries is challenging but can significantly influence the circular economy. Currently, a complete technology consisting of cross-contamination-free recovery of silicon wafers from end-of-life PV modules, a low-cost environmentally friendly purification process of the recovered PV silicon, a high yield conversion process of the recovered PV silicon into nano-Si, and its subsequent application in lithium-ion batteries is unavailable. This study provides a complete package including cross-contamination-free recovery, economical purification, reliable conversion to nano-Si, and efficient application of the end-of-life PV nano-Si in lithium-ion batteries. Hydrofluoric acid-free recovery and purification processes are demonstrated which can deliver large quantities of high-purity (≥ 99) silicon. In addition, the subsequent ball milling process produces very distinct nano-Si with different shapes and sizes. This study also creates a very effective nano-Si anode through in-situ crosslinking of water-soluble carboxymethyl cellulose and poly (acrylic acid) precursors. The integration of distinct PV nano-Si and water-soluble carboxymethyl cellulose-poly (acrylic acid) crosslink binder opens distinct possibilities to develop silicon-based practical anode for next generation low-cost lithium-ion batteries to power cell phones to electric vehicles.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"135 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2024.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recovery of silicon from end-of-life photovoltaic (PV) modules, purification, conversion to nano silicon (nano-Si), and subsequent application as an anode in lithium-ion batteries is challenging but can significantly influence the circular economy. Currently, a complete technology consisting of cross-contamination-free recovery of silicon wafers from end-of-life PV modules, a low-cost environmentally friendly purification process of the recovered PV silicon, a high yield conversion process of the recovered PV silicon into nano-Si, and its subsequent application in lithium-ion batteries is unavailable. This study provides a complete package including cross-contamination-free recovery, economical purification, reliable conversion to nano-Si, and efficient application of the end-of-life PV nano-Si in lithium-ion batteries. Hydrofluoric acid-free recovery and purification processes are demonstrated which can deliver large quantities of high-purity (≥ 99) silicon. In addition, the subsequent ball milling process produces very distinct nano-Si with different shapes and sizes. This study also creates a very effective nano-Si anode through in-situ crosslinking of water-soluble carboxymethyl cellulose and poly (acrylic acid) precursors. The integration of distinct PV nano-Si and water-soluble carboxymethyl cellulose-poly (acrylic acid) crosslink binder opens distinct possibilities to develop silicon-based practical anode for next generation low-cost lithium-ion batteries to power cell phones to electric vehicles.