The [18F]F-FDG PET/CT Radiomics Classifier of Histologic Subtypes and Anatomical Disease Origins across Various Malignancies: A Proof-of-Principle Study
R. Hinzpeter, S. A. Mirshahvalad, Vanessa Murad, Lisa Avery, R. Kulanthaivelu, A. Kohan, C. Ortega, E. Elimova, Jonathan Yeung, A. Hope, U. Metser, P. Veit-Haibach
{"title":"The [18F]F-FDG PET/CT Radiomics Classifier of Histologic Subtypes and Anatomical Disease Origins across Various Malignancies: A Proof-of-Principle Study","authors":"R. Hinzpeter, S. A. Mirshahvalad, Vanessa Murad, Lisa Avery, R. Kulanthaivelu, A. Kohan, C. Ortega, E. Elimova, Jonathan Yeung, A. Hope, U. Metser, P. Veit-Haibach","doi":"10.3390/cancers16101873","DOIUrl":null,"url":null,"abstract":"We aimed to investigate whether [18F]F-FDG-PET/CT-derived radiomics can classify histologic subtypes and determine the anatomical origin of various malignancies. In this IRB-approved retrospective study, 391 patients (age = 66.7 ± 11.2) with pulmonary (n = 142), gastroesophageal (n = 128) and head and neck (n = 121) malignancies were included. Image segmentation and feature extraction were performed semi-automatically. Two models (all possible subset regression [APS] and recursive partitioning) were employed to predict histology (squamous cell carcinoma [SCC; n = 219] vs. adenocarcinoma [AC; n = 172]), the anatomical origin, and histology plus anatomical origin. The recursive partitioning algorithm outperformed APS to determine histology (sensitivity 0.90 vs. 0.73; specificity 0.77 vs. 0.65). The recursive partitioning algorithm also revealed good predictive ability regarding anatomical origin. Particularly, pulmonary malignancies were identified with high accuracy (sensitivity 0.93; specificity 0.98). Finally, a model for the synchronous prediction of histology and anatomical disease origin resulted in high accuracy in determining gastroesophageal AC (sensitivity 0.88; specificity 0.92), pulmonary AC (sensitivity 0.89; specificity 0.88) and head and neck SCC (sensitivity 0.91; specificity 0.92). Adding PET-features was associated with marginal incremental value for both the prediction of histology and origin in the APS model. Overall, our study demonstrated a good predictive ability to determine patients’ histology and anatomical origin using [18F]F-FDG-PET/CT-derived radiomics features, mainly from CT.","PeriodicalId":504676,"journal":{"name":"Cancers","volume":"18 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cancers16101873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to investigate whether [18F]F-FDG-PET/CT-derived radiomics can classify histologic subtypes and determine the anatomical origin of various malignancies. In this IRB-approved retrospective study, 391 patients (age = 66.7 ± 11.2) with pulmonary (n = 142), gastroesophageal (n = 128) and head and neck (n = 121) malignancies were included. Image segmentation and feature extraction were performed semi-automatically. Two models (all possible subset regression [APS] and recursive partitioning) were employed to predict histology (squamous cell carcinoma [SCC; n = 219] vs. adenocarcinoma [AC; n = 172]), the anatomical origin, and histology plus anatomical origin. The recursive partitioning algorithm outperformed APS to determine histology (sensitivity 0.90 vs. 0.73; specificity 0.77 vs. 0.65). The recursive partitioning algorithm also revealed good predictive ability regarding anatomical origin. Particularly, pulmonary malignancies were identified with high accuracy (sensitivity 0.93; specificity 0.98). Finally, a model for the synchronous prediction of histology and anatomical disease origin resulted in high accuracy in determining gastroesophageal AC (sensitivity 0.88; specificity 0.92), pulmonary AC (sensitivity 0.89; specificity 0.88) and head and neck SCC (sensitivity 0.91; specificity 0.92). Adding PET-features was associated with marginal incremental value for both the prediction of histology and origin in the APS model. Overall, our study demonstrated a good predictive ability to determine patients’ histology and anatomical origin using [18F]F-FDG-PET/CT-derived radiomics features, mainly from CT.