{"title":"Accurate Satellite Operation Predictions Using Attention-BiLSTM Model with Telemetry Correlation","authors":"Yi Peng, ShuZe Jia, Lizi Xie, Jian Shang","doi":"10.3390/aerospace11050398","DOIUrl":null,"url":null,"abstract":"In satellite health management, anomalies are mostly resolved after an event and are rarely predicted in advance. Thus, trend prediction is critical for avoiding satellite faults, which may affect the accuracy and quality of satellite data and even greatly impact safety. However, it is difficult to predict satellite operation using a simple model because satellite systems are complex and telemetry data are copious, coupled, and intermittent. Therefore, this study proposes a model that combines an attention mechanism and bidirectional long short-term memory (attention-BiLSTM) with telemetry correlation to predict satellite behaviour. First, a high-dimensional K-nearest neighbour mutual information method is used to select the related telemetry variables from multiple variables of satellite telemetry data. Next, we propose a new BiLSTM model with an attention mechanism for telemetry prediction. The dataset used in this study was generated and transmitted from the FY3E meteorological satellite power system. The proposed method was compared with other methods using the same dataset used in the experiment to verify its superiority. The results confirmed that the proposed method outperformed the other methods owing to its prediction precision and superior accuracy, indicating its potential for application in intelligent satellite health management systems.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050398","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In satellite health management, anomalies are mostly resolved after an event and are rarely predicted in advance. Thus, trend prediction is critical for avoiding satellite faults, which may affect the accuracy and quality of satellite data and even greatly impact safety. However, it is difficult to predict satellite operation using a simple model because satellite systems are complex and telemetry data are copious, coupled, and intermittent. Therefore, this study proposes a model that combines an attention mechanism and bidirectional long short-term memory (attention-BiLSTM) with telemetry correlation to predict satellite behaviour. First, a high-dimensional K-nearest neighbour mutual information method is used to select the related telemetry variables from multiple variables of satellite telemetry data. Next, we propose a new BiLSTM model with an attention mechanism for telemetry prediction. The dataset used in this study was generated and transmitted from the FY3E meteorological satellite power system. The proposed method was compared with other methods using the same dataset used in the experiment to verify its superiority. The results confirmed that the proposed method outperformed the other methods owing to its prediction precision and superior accuracy, indicating its potential for application in intelligent satellite health management systems.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.