{"title":"Finite Difference Method for Infection Model of HPV with Cervical Cancer under Caputo Operator","authors":"Bushra Bajjah, Mahmut Modanli","doi":"10.1155/2024/2580745","DOIUrl":null,"url":null,"abstract":"In this paper, a fractional model in the Caputo sense is used to characterize the dynamics of HPV with cervical cancer. Generalized mean value theorem has been used to examine whether the infection model has a unique positive solution. The model has two equilibrium points: the disease-free point and the endemic point. The examination of the system’s local and global stability is provided in terms of the basic reproductive number Rp°. The global stability analysis has been carried out using an appropriate Lyapunov function and the LaSalle invariant principle. The results demonstrate that in the infection model, if Rp°<1, then the solution converges to the disease-free equilibrium, which is both locally and globally asymptotically stable. Whilst Rp°>1, the endemic equilibrium is considered to exist. Simulations are implemented via a finite difference method with Grünwald-Letnikov discretization approach for Caputo derivative operator to define how changes in parameters impact the dynamic behavior of the system using Matlab.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2580745","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a fractional model in the Caputo sense is used to characterize the dynamics of HPV with cervical cancer. Generalized mean value theorem has been used to examine whether the infection model has a unique positive solution. The model has two equilibrium points: the disease-free point and the endemic point. The examination of the system’s local and global stability is provided in terms of the basic reproductive number Rp°. The global stability analysis has been carried out using an appropriate Lyapunov function and the LaSalle invariant principle. The results demonstrate that in the infection model, if Rp°<1, then the solution converges to the disease-free equilibrium, which is both locally and globally asymptotically stable. Whilst Rp°>1, the endemic equilibrium is considered to exist. Simulations are implemented via a finite difference method with Grünwald-Letnikov discretization approach for Caputo derivative operator to define how changes in parameters impact the dynamic behavior of the system using Matlab.
期刊介绍:
The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.