(Special Issue) Global behavior of solutions of a two-dimensional system of difference equations

Mehmet Gümüş, R. Abo-zeid, Kemal Türk
{"title":"(Special Issue) Global behavior of solutions of a two-dimensional system of difference equations","authors":"Mehmet Gümüş, R. Abo-zeid, Kemal Türk","doi":"10.54286/ikjm.1457991","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly investigate the qualitative and quantitative behavior of the solutions of a discrete system of difference equations \n$$x_{n+1}=\\frac{x_{n-1}}{y_{n-1}},\\quad y_{n+1}=\\frac{x_{n-1} }{ax_{n-1}+by_{n-1}},\\quad n=0,1,\\ldots, $$ \nwhere $a$, $b$ and the initial values $x_{-1},x_{0},y_{-1},y_{0}$ are non-zero real numbers. For $a\\in \\mathbb{R}_+-\\{1\\}$, we show any admissible solution $\\{(x_n,y_n)\\}_{n=-1}^\\infty$ is either entirely located in a certain quadrant of the plane or there exists a natural number $N>0$ (we calculate its value) such that $\\{(x_n,y_n)\\}_{n=N}^\\infty$ is located. Besides, some numerical simulations with graphs are given to emphasize the efficiency of our theoretical results in the article.","PeriodicalId":499719,"journal":{"name":"Ikonion journal of mathematics","volume":"54 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ikonion journal of mathematics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54286/ikjm.1457991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we mainly investigate the qualitative and quantitative behavior of the solutions of a discrete system of difference equations $$x_{n+1}=\frac{x_{n-1}}{y_{n-1}},\quad y_{n+1}=\frac{x_{n-1} }{ax_{n-1}+by_{n-1}},\quad n=0,1,\ldots, $$ where $a$, $b$ and the initial values $x_{-1},x_{0},y_{-1},y_{0}$ are non-zero real numbers. For $a\in \mathbb{R}_+-\{1\}$, we show any admissible solution $\{(x_n,y_n)\}_{n=-1}^\infty$ is either entirely located in a certain quadrant of the plane or there exists a natural number $N>0$ (we calculate its value) such that $\{(x_n,y_n)\}_{n=N}^\infty$ is located. Besides, some numerical simulations with graphs are given to emphasize the efficiency of our theoretical results in the article.
(特刊)二维差分方程组解的全局行为
本文主要研究离散差分方程 $$x_{n+1}=\frac{x_{n-1}}y_{n-1}} 解的定性和定量行为、\quad y_{n+1}=\frac{x_{n-1} }{ax_{n-1}+by_{n-1}},\quad n=0,1,\ldots, $$ 其中 $a$、$b$ 和初始值 $x_{-1},x_{0},y_{-1},y_{0}$ 均为非零实数。对于 \mathbb{R}_+-\{1\}$ 中的 $a$,我们证明了任何可接受解 $\{(x_n,y_n)\}_{n=-1}^\infty$ 要么完全位于平面的某个象限,要么存在一个自然数 $N>0$(我们计算了它的值),使得 $\{(x_n,y_n)\}_{n=N}^\infty$ 被定位。此外,文章还给出了一些带图的数值模拟,以强调我们理论结果的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信