Classifications of THA-surfaces in I^3

B. Senoussi
{"title":"Classifications of THA-surfaces in I^3","authors":"B. Senoussi","doi":"10.31926/but.mif.2024.4.66.1.12","DOIUrl":null,"url":null,"abstract":"In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M2 in I3 is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M2 in I3 is a THA- surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I3 and study THA-surfaces with zero curvature in I3.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"47 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2024.4.66.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M2 in I3 is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M2 in I3 is a THA- surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I3 and study THA-surfaces with zero curvature in I3.
I^3 中 THA 曲面的分类
在经典微分几何学中,获得曲面的高斯曲率和平均曲率是最重要的问题之一。如果 I3 中的曲面 M2 的参数为 r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t)),则它是第一类 THA 曲面。)如果 I3 中的曲面 M2 的参数为 r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t),其中 A 和 B 为非零实数,则该曲面为第二类 THA- 曲面[16, 17, 18]。本文将在三维各向同性空间 I3 中划分两类 THA 曲面,并研究 I3 中曲率为零的 THA 曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信