Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation

M. Aghabozorgi Nafchi, F. Němec, G. Pi, Z. Němeček, J. Šafránková, K. Grygorov, J. Šimůnek, T.-C. Tsai
{"title":"Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation","authors":"M. Aghabozorgi Nafchi, F. Němec, G. Pi, Z. Němeček, J. Šafránková, K. Grygorov, J. Šimůnek, T.-C. Tsai","doi":"10.3389/fspas.2024.1390427","DOIUrl":null,"url":null,"abstract":"An intrinsic limitation of empirical models of the magnetopause location is a predefined magnetopause shape and assumed functional dependences on relevant parameters. We overcome this limitation using a machine learning approach (artificial neural networks), allowing us to incorporate general, purely data-driven dependences. For the training and testing of the developed neural network model, a data set of about 15,000 magnetopause crossings identified in the THEMIS A-E, Magion 4, Geotail, and Interball-1 satellite data in the subsolar region is used. A cylindrical symmetry around the direction of the impinging solar wind is assumed, and solar wind dynamic pressure, interplanetary magnetic field magnitude, cone angle, clock angle, tilt angle, and corrected Dst index are considered as parameters. The effect of these parameters on the magnetopause location is revealed. The performance of the developed model is compared with other empirical magnetopause models. Finally, we demonstrate and discuss the inaccuracy of magnetopause models due to the inaccurate information about the impinging solar wind parameters based on measurements near the L1 point. This inaccuracy imposes a theoretical limit on the precision of magnetopause predictions, a limit that our model closely approaches.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"53 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2024.1390427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An intrinsic limitation of empirical models of the magnetopause location is a predefined magnetopause shape and assumed functional dependences on relevant parameters. We overcome this limitation using a machine learning approach (artificial neural networks), allowing us to incorporate general, purely data-driven dependences. For the training and testing of the developed neural network model, a data set of about 15,000 magnetopause crossings identified in the THEMIS A-E, Magion 4, Geotail, and Interball-1 satellite data in the subsolar region is used. A cylindrical symmetry around the direction of the impinging solar wind is assumed, and solar wind dynamic pressure, interplanetary magnetic field magnitude, cone angle, clock angle, tilt angle, and corrected Dst index are considered as parameters. The effect of these parameters on the magnetopause location is revealed. The performance of the developed model is compared with other empirical magnetopause models. Finally, we demonstrate and discuss the inaccuracy of magnetopause models due to the inaccurate information about the impinging solar wind parameters based on measurements near the L1 point. This inaccuracy imposes a theoretical limit on the precision of magnetopause predictions, a limit that our model closely approaches.
利用机器学习进行磁极顶位置建模:太阳风参数传播导致的不准确性
磁层顶位置经验模型的一个内在局限是预先确定的磁层顶形状和相关参数的假定函数依赖关系。我们利用机器学习方法(人工神经网络)克服了这一局限,使我们能够纳入一般的、纯数据驱动的依赖关系。为了训练和测试所开发的神经网络模型,我们使用了由 THEMIS A-E、Magion 4、Geotail 和 Interball-1 卫星数据中识别出的太阳系下区域约 15,000 个磁极交叉点组成的数据集。假定太阳风撞击方向为圆柱对称,太阳风动压、行星际磁场幅值、锥角、时钟角、倾斜角和校正 Dst 指数被视为参数。揭示了这些参数对磁极位置的影响。将所开发模型的性能与其他经验磁层顶模型进行了比较。最后,我们展示并讨论了磁层顶模型的不准确性,这是由于根据 L1 点附近的测量结果得到的有关撞击太阳风参数的信息不准确造成的。这种不准确性对磁层顶预测的精确度造成了理论上的限制,而我们的模型非常接近这一限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信