Hydrogen Safety by Design: Exclusion of Flame Blow-Out from a TPRD

Hydrogen Pub Date : 2024-05-15 DOI:10.3390/hydrogen5020016
M. Kazemi, S. Brennan, V. Molkov
{"title":"Hydrogen Safety by Design: Exclusion of Flame Blow-Out from a TPRD","authors":"M. Kazemi, S. Brennan, V. Molkov","doi":"10.3390/hydrogen5020016","DOIUrl":null,"url":null,"abstract":"Onboard hydrogen storage tanks are currently fitted with thermally activated pressure relief devices (TPRDs), enabling hydrogen to blowdown in the event of fire. For release diameters below the critical diameter, the flame from the TPRD may blow-out during a pressure drop. Flame blow-outs pose a safety concern for an indoor or covered environment, e.g., a garage or carpark, where hydrogen can accumulate and deflagrate. This study describes the application of a validated computational fluid dynamics (CFD) model to simulate the dynamic flame behaviour from a TPRD designed to exclude its blow-out. The dynamic behaviour replicates a real scenario. Flame behaviour during tank blowdown through two TPRDs with different nozzle geometries is presented. Simulations confirm flame blow-out for a single-diameter TPRD of 0.5 mm during tank blowdown, while the double-diameter nozzle successfully excludes flame blow-out. The pressure at which the flame blow-out process is initiated during blowdown through a single-diameter nozzle was predicted.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":"46 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrogen5020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Onboard hydrogen storage tanks are currently fitted with thermally activated pressure relief devices (TPRDs), enabling hydrogen to blowdown in the event of fire. For release diameters below the critical diameter, the flame from the TPRD may blow-out during a pressure drop. Flame blow-outs pose a safety concern for an indoor or covered environment, e.g., a garage or carpark, where hydrogen can accumulate and deflagrate. This study describes the application of a validated computational fluid dynamics (CFD) model to simulate the dynamic flame behaviour from a TPRD designed to exclude its blow-out. The dynamic behaviour replicates a real scenario. Flame behaviour during tank blowdown through two TPRDs with different nozzle geometries is presented. Simulations confirm flame blow-out for a single-diameter TPRD of 0.5 mm during tank blowdown, while the double-diameter nozzle successfully excludes flame blow-out. The pressure at which the flame blow-out process is initiated during blowdown through a single-diameter nozzle was predicted.
氢气安全设计:从 TPRD 中排除火焰喷发
目前,机载氢气储罐安装有热激活压力释放装置(TPRD),可在发生火灾时将氢气排出。当释放直径低于临界直径时,TPRD 的火焰可能会在压力下降时喷出。火焰喷出会对室内或有顶棚的环境(如车库或停车场)造成安全隐患,因为氢气会在这些地方积聚并发生爆燃。本研究介绍了应用经过验证的计算流体动力学(CFD)模型模拟 TPRD 的动态火焰行为的情况,该 TPRD 的设计目的是防止火焰喷出。动态行为与实际情况相同。介绍了通过两个具有不同喷嘴几何形状的 TPRD 进行油箱吹扫时的火焰行为。模拟结果证实,单直径 0.5 毫米的 TPRD 在油箱吹扫过程中会喷出火焰,而双直径喷嘴则成功地排除了火焰喷出。预测了通过单直径喷嘴进行排污时火焰喷出过程的启动压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信