Boas-type theorems for the free metaplectic transform

Q2 Mathematics
Abdelghani El Gargati, Imane Berkak, El Mehdi Loualid
{"title":"Boas-type theorems for the free metaplectic transform","authors":"Abdelghani El Gargati,&nbsp;Imane Berkak,&nbsp;El Mehdi Loualid","doi":"10.1007/s11565-024-00522-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we focus on the free metaplectic transform and its implications on the properties of functions. The free metaplectic transform is a generalization of the Fourier transform that allows us to analyze the behavior of functions in the metaplectic domain. F. Moricz previously investigated the properties of functions <span>\\(f\\in L^1({\\mathbb {R}})\\)</span> whose Fourier transforms <span>\\(\\widehat{f}\\)</span> belong to <span>\\(L^1({\\mathbb {R}})\\)</span>. He established certain sufficient conditions based on <span>\\(\\widehat{f}\\)</span> to determine whether <i>f</i> belongs to the Lipschitz classes <span>\\({\\text {Lip}}(\\gamma )\\)</span> and <span>\\({\\text {lip}}(\\gamma )\\)</span>, where <span>\\(0 &lt; \\gamma \\le 1\\)</span>, or the Zygmund classes <span>\\({\\text {Zyg}}(\\gamma )\\)</span> and <span>\\({\\text {zyg}}(\\gamma )\\)</span>, where <span>\\(0 &lt; \\gamma \\le 2\\)</span>. In this study, our aim is to extend these findings and explore the properties of functions in relation to the free metaplectic transform.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1491 - 1507"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00522-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focus on the free metaplectic transform and its implications on the properties of functions. The free metaplectic transform is a generalization of the Fourier transform that allows us to analyze the behavior of functions in the metaplectic domain. F. Moricz previously investigated the properties of functions \(f\in L^1({\mathbb {R}})\) whose Fourier transforms \(\widehat{f}\) belong to \(L^1({\mathbb {R}})\). He established certain sufficient conditions based on \(\widehat{f}\) to determine whether f belongs to the Lipschitz classes \({\text {Lip}}(\gamma )\) and \({\text {lip}}(\gamma )\), where \(0 < \gamma \le 1\), or the Zygmund classes \({\text {Zyg}}(\gamma )\) and \({\text {zyg}}(\gamma )\), where \(0 < \gamma \le 2\). In this study, our aim is to extend these findings and explore the properties of functions in relation to the free metaplectic transform.

自由元映射变换的博厄斯型定理
在本研究中,我们将重点关注自由元映射变换及其对函数性质的影响。自由元映射变换是傅立叶变换的广义化,它允许我们分析函数在元映射域中的行为。F. Moricz 以前研究过函数 \(f\in L^1({\mathbb {R}})\的傅里叶变换 \(\widehat{f}\)属于 \(L^1({/\mathbb {R}})\)的性质。)他基于 \(\widehat{f}\) 建立了某些充分条件来确定 f 是否属于 Lipschitz 类 \({\text {Lip}}(\gamma )\) 和 \({\text {lip}}(\gamma )\), 其中 \(0 <;\或 Zygmund 类 \({\text {Zyg}}(\gamma )\) and\({\text {zyg}}(\gamma )\), where\(0 < \gamma \le 2\).在这项研究中,我们的目的是扩展这些发现,并探索与自由元变换相关的函数性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信