Almost η-Ricci solitons on two classes of almost Kenmotsu manifolds

D. Dey, P. Majhi
{"title":"Almost η-Ricci solitons on two classes of almost Kenmotsu manifolds","authors":"D. Dey, P. Majhi","doi":"10.31926/but.mif.2024.4.66.1.3","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to characterize two classes of almost Kenmotsu manifolds admitting almost η-Ricci solitons. In this context, we have shown that in a (k, µ) and (k, µ)' -almost Kenmotsu manifold admitting an almost η-Ricci soliton the curvature conditions (i) the manifold is Einstein, (ii) the manifold is Ricci symmetric (∇S = 0), (iii) the manifold is Ricci semisymmetric (R · S = 0) and (iv) the manifold is projective Ricci semisymmetric (P · S = 0) are equivalent. Also, we have shown that the curvature condition Q · P = 0 in a (k, µ)-almost Kenmotsu manifold admitting an almost η-Ricci soliton holds if and only if the manifold is locally isometric to the hyperbolic space H2n+1(−1) and if a (k, µ)' -almost Kenmotsu manifold admitting an almost η-Ricci soliton satisfies the curvature condition Q · R = 0, then it is locally isometric to the Riemannian product H n+1(−4) × ℝn.\nn.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"57 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2024.4.66.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The object of the present paper is to characterize two classes of almost Kenmotsu manifolds admitting almost η-Ricci solitons. In this context, we have shown that in a (k, µ) and (k, µ)' -almost Kenmotsu manifold admitting an almost η-Ricci soliton the curvature conditions (i) the manifold is Einstein, (ii) the manifold is Ricci symmetric (∇S = 0), (iii) the manifold is Ricci semisymmetric (R · S = 0) and (iv) the manifold is projective Ricci semisymmetric (P · S = 0) are equivalent. Also, we have shown that the curvature condition Q · P = 0 in a (k, µ)-almost Kenmotsu manifold admitting an almost η-Ricci soliton holds if and only if the manifold is locally isometric to the hyperbolic space H2n+1(−1) and if a (k, µ)' -almost Kenmotsu manifold admitting an almost η-Ricci soliton satisfies the curvature condition Q · R = 0, then it is locally isometric to the Riemannian product H n+1(−4) × ℝn. n.
两类近 Kenmotsu 流形上的近η-Ricci 孤子
本文的目的是描述两类几乎接纳几乎 η-Ricci 孤子的 Kenmotsu 流形的特征。在此背景下,我们证明了在(k, µ)和(k, µ)'-几乎肯莫特流形中,接纳几乎 η-Ricci 孤子的曲率条件 (i) 流形是爱因斯坦流形、(ii) 流形是利玛窦对称的(∇S = 0); (iii) 流形是利玛窦半对称的(R - S = 0); (iv) 流形是射影利玛窦半对称的(P - S = 0)。此外,我们还证明了,当且仅当流形与双曲空间 H2n+1(-1)局部等距时,且当一个 (k. µ)' 几乎是 Kenmotsu 流形,且该流形接纳一个几乎 η-Ricci 孤子时,该流形中的曲率条件 Q - P = 0 成立、µ)' -most Kenmotsu 流形接纳几乎 η-Ricci 孤子,且满足曲率条件 Q - R = 0,那么它与黎曼积 H n+1(-4) × ℝn 局部等距。n.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信