{"title":"Stereographic compactification and affine bi-Lipschitz homeomorphisms","authors":"Vincent Grandjean, Roger Oliveira","doi":"10.1017/s001708952400017x","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline1.png\"/>\n\t\t<jats:tex-math>\n$\\sigma _q \\,:\\,{{\\mathbb{R}}^q} \\to{\\textbf{S}}^q\\setminus N_q$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be the inverse of the stereographic projection with center the north pole <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline2.png\"/>\n\t\t<jats:tex-math>\n$N_q$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline3.png\"/>\n\t\t<jats:tex-math>\n$W_i$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a closed subset of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline4.png\"/>\n\t\t<jats:tex-math>\n${\\mathbb{R}}^{q_i}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline5.png\"/>\n\t\t<jats:tex-math>\n$i=1,2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline6.png\"/>\n\t\t<jats:tex-math>\n$\\Phi \\,:\\,W_1 \\to W_2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline7.png\"/>\n\t\t<jats:tex-math>\n$\\sigma _{q_2}\\circ \\Phi \\circ \\sigma _{q_1}^{-1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline8.png\"/>\n\t\t<jats:tex-math>\n$N_{q_1}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with value <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline9.png\"/>\n\t\t<jats:tex-math>\n$N_{q_2}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> whenever <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952400017X_inline10.png\"/>\n\t\t<jats:tex-math>\n$W_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is unbounded.</jats:p>\n\t <jats:p>As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001708952400017x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let
$\sigma _q \,:\,{{\mathbb{R}}^q} \to{\textbf{S}}^q\setminus N_q$
be the inverse of the stereographic projection with center the north pole
$N_q$
. Let
$W_i$
be a closed subset of
${\mathbb{R}}^{q_i}$
, for
$i=1,2$
. Let
$\Phi \,:\,W_1 \to W_2$
be a bi-Lipschitz homeomorphism. The main result states that the homeomorphism
$\sigma _{q_2}\circ \Phi \circ \sigma _{q_1}^{-1}$
is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at
$N_{q_1}$
with value
$N_{q_2}$
whenever
$W_1$
is unbounded.As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization of definable bi-Lipschitz homeomorphisms of Valette.