Subsystems via quantum motions

IF 1.4 3区 数学 Q1 MATHEMATICS
Ali Shojaei-Fard
{"title":"Subsystems via quantum motions","authors":"Ali Shojaei-Fard","doi":"10.1007/s13324-024-00912-3","DOIUrl":null,"url":null,"abstract":"<div><p>Thanks to the topological Hopf algebra of renormalization of Green’s functions in a gauge field theory, we associate a bi-Heyting algebra to each combinatorial Dyson–Schwinger equation. This setting leads us to characterize subsystems generated by the solution spaces of quantum motions. In addition, we apply the <span>\\(c_{2}\\)</span>-invariant of Feynman diagrams to build a new Heyting algebra of multiplicative groups which encodes a more general class of subsystems of the physical theory.\n</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00912-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00912-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to the topological Hopf algebra of renormalization of Green’s functions in a gauge field theory, we associate a bi-Heyting algebra to each combinatorial Dyson–Schwinger equation. This setting leads us to characterize subsystems generated by the solution spaces of quantum motions. In addition, we apply the \(c_{2}\)-invariant of Feynman diagrams to build a new Heyting algebra of multiplicative groups which encodes a more general class of subsystems of the physical theory.

Abstract Image

通过量子运动的子系统
借助规量场理论中格林函数重正化的拓扑霍普夫代数,我们为每个组合戴森-施文格方程关联了一个双海廷代数。这种设置使我们能够描述量子运动的解空间所产生的子系统。此外,我们应用费曼图的(c_{2}\)不变量建立了一个新的乘法群海廷代数,它编码了物理理论的一类更普遍的子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信