The anti-self-dual deformation complex and a conjecture of Singer

A. Gover, M. Gursky
{"title":"The anti-self-dual deformation complex and a conjecture of Singer","authors":"A. Gover, M. Gursky","doi":"10.1515/crelle-2024-0028","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>M</m:mi>\n <m:mn>4</m:mn>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0028_ineq_0001.png\"/>\n <jats:tex-math>(M^{4},g)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be a smooth, closed, oriented anti-self-dual (ASD) four-manifold.\n<jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi>M</m:mi>\n <m:mn>4</m:mn>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0028_ineq_0001.png\"/>\n <jats:tex-math>(M^{4},g)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is said to be <jats:italic>unobstructed</jats:italic> if the cokernel of the linearisation of the self-dual Weyl tensor is trivial.\nThis condition can also be characterised as the vanishing of the second cohomology group of the ASD deformation complex, and is central to understanding the local structure of the moduli space of ASD conformal structures.\nIt also arises in construction of ASD manifolds by twistor and gluing methods.\nIn this article, we give conformally invariant conditions which imply an ASD manifold of positive Yamabe type is unobstructed.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"7 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let ( M 4 , g ) (M^{4},g) be a smooth, closed, oriented anti-self-dual (ASD) four-manifold. ( M 4 , g ) (M^{4},g) is said to be unobstructed if the cokernel of the linearisation of the self-dual Weyl tensor is trivial. This condition can also be characterised as the vanishing of the second cohomology group of the ASD deformation complex, and is central to understanding the local structure of the moduli space of ASD conformal structures. It also arises in construction of ASD manifolds by twistor and gluing methods. In this article, we give conformally invariant conditions which imply an ASD manifold of positive Yamabe type is unobstructed.
反自偶变形复数和辛格的一个猜想
设 ( M 4 , g ) (M^{4},g) 是光滑、封闭、定向的反自偶(ASD)四曲面。 ( M 4 , g ) (M^{4},g) 如果自偶韦尔张量线性化的协核是微不足道的,就可以说它是无阻塞的。这个条件也可以表征为ASD变形复数的第二同调群的消失,它是理解ASD共形结构模空间局部结构的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信