Smart Bridge Damage Assessment through Integrated Multi-Sensor Fusion Vehicle Monitoring

Aminreza Karamoozian, Masood Varshosaz, Amirhossein Karamoozian, Huxiong Li, Zhaoxi Fang
{"title":"Smart Bridge Damage Assessment through Integrated Multi-Sensor Fusion Vehicle Monitoring","authors":"Aminreza Karamoozian, Masood Varshosaz, Amirhossein Karamoozian, Huxiong Li, Zhaoxi Fang","doi":"10.5194/isprs-archives-xlviii-1-2024-937-2024","DOIUrl":null,"url":null,"abstract":"Abstract. This study explores the efficacy of vehicle-assisted monitoring for bridge damage assessment, emphasizing the integration of diverse sensor data sources. A novel method utilizing a deep neural network is proposed, enabling the fusion of fixed sensors on bridges and onboard vehicle sensors for damage assessment. The network offers scalability, robustness, and implementability, accommodating various measurement types while handling noise and dynamic loading conditions. The main novel aspect of our work is its ability to extract damage-sensitive features without signal preprocessing for future bridge health monitoring systems. Through numerical evaluations, considering realistic operational conditions, the proposed method demonstrates the capability to detect subtle damage under varying traffic conditions. Findings underscore the importance of integrating vehicle and bridge sensor data for reliable damage assessment, recommending strategies for optimal monitoring implementation by road authorities and bridge owners.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"1 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-937-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This study explores the efficacy of vehicle-assisted monitoring for bridge damage assessment, emphasizing the integration of diverse sensor data sources. A novel method utilizing a deep neural network is proposed, enabling the fusion of fixed sensors on bridges and onboard vehicle sensors for damage assessment. The network offers scalability, robustness, and implementability, accommodating various measurement types while handling noise and dynamic loading conditions. The main novel aspect of our work is its ability to extract damage-sensitive features without signal preprocessing for future bridge health monitoring systems. Through numerical evaluations, considering realistic operational conditions, the proposed method demonstrates the capability to detect subtle damage under varying traffic conditions. Findings underscore the importance of integrating vehicle and bridge sensor data for reliable damage assessment, recommending strategies for optimal monitoring implementation by road authorities and bridge owners.
通过集成式多传感器融合车辆监测进行智能桥梁损坏评估
摘要本研究探讨了车辆辅助监测在桥梁损伤评估中的功效,强调了不同传感器数据源的整合。研究提出了一种利用深度神经网络的新方法,可将桥梁上的固定传感器和车载传感器融合在一起进行损坏评估。该网络具有可扩展性、鲁棒性和可实施性,可适应各种测量类型,同时还能处理噪声和动态负载条件。我们工作的主要新颖之处在于,它能够为未来的桥梁健康监测系统提取损伤敏感特征,而无需进行信号预处理。通过考虑现实运行条件的数值评估,所提出的方法展示了在不同交通条件下检测细微损伤的能力。研究结果强调了整合车辆和桥梁传感器数据以进行可靠的损坏评估的重要性,并为道路管理部门和桥梁所有者提出了优化监测实施的策略建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信