Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Fazia Mechai, Ahmad Al Shboul, Mohand Outahar Bensidhoum, Hossein Anabestani, Mohsen Ketabi, Ricardo Izquierdo
{"title":"Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications","authors":"Fazia Mechai, Ahmad Al Shboul, Mohand Outahar Bensidhoum, Hossein Anabestani, Mohsen Ketabi, Ricardo Izquierdo","doi":"10.3390/chemosensors12050083","DOIUrl":null,"url":null,"abstract":"This research contributes to work on synthesizing zinc oxide nanoparticles (ZnO NPs) at room temperature (RT) and their utilization in flexible gas sensors. RT ZnO NP synthesis with a basicity solution (pH ≈ 13) demonstrates an efficient method for synthesizing well-crystalline ZnO NPs (RT.pH13) comparable to those synthesized by the hydrothermal method (hyd.C). The RT.pH13 achieved a high thermal stability with minimal organic reside impurities (~4.2 wt%), 30–80 nm particle size distribution, and a specific surface area (14 m2 g−1). The synthesized pre- and post-calcinated RT.pH13 NPs were then incorporated into flexible sensors for gas sensing applications at ambient conditions (RT and relative humidity of 30–50%). The pre-calcinated ZnO-based sensor (RT.pH13) demonstrated superior sensitivity to styrene and acetic acid and lower sensitivity to dimethyl-6-octenal. The calcinated ZnO-based sensor (RT.pH13.C) exhibited lower sensitivity to styrene and acetic acid, but heightened sensitivity to benzene, acetone, and ethanol. This suggests a correlation between sensitivity and structural transformations following calcination. The investigation of the sensing mechanisms highlighted the role of surface properties in the sensors’ affinity for specific gas molecules and temperature and humidity variations. The study further explored the sensors’ mechanical flexibility, which is crucial for flexible Internet of Things (IoT) applications.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors12050083","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research contributes to work on synthesizing zinc oxide nanoparticles (ZnO NPs) at room temperature (RT) and their utilization in flexible gas sensors. RT ZnO NP synthesis with a basicity solution (pH ≈ 13) demonstrates an efficient method for synthesizing well-crystalline ZnO NPs (RT.pH13) comparable to those synthesized by the hydrothermal method (hyd.C). The RT.pH13 achieved a high thermal stability with minimal organic reside impurities (~4.2 wt%), 30–80 nm particle size distribution, and a specific surface area (14 m2 g−1). The synthesized pre- and post-calcinated RT.pH13 NPs were then incorporated into flexible sensors for gas sensing applications at ambient conditions (RT and relative humidity of 30–50%). The pre-calcinated ZnO-based sensor (RT.pH13) demonstrated superior sensitivity to styrene and acetic acid and lower sensitivity to dimethyl-6-octenal. The calcinated ZnO-based sensor (RT.pH13.C) exhibited lower sensitivity to styrene and acetic acid, but heightened sensitivity to benzene, acetone, and ethanol. This suggests a correlation between sensitivity and structural transformations following calcination. The investigation of the sensing mechanisms highlighted the role of surface properties in the sensors’ affinity for specific gas molecules and temperature and humidity variations. The study further explored the sensors’ mechanical flexibility, which is crucial for flexible Internet of Things (IoT) applications.
pH 值对室温合成用于柔性气体传感器的氧化锌纳米粒子的影响
这项研究有助于在室温(RT)下合成氧化锌纳米粒子(ZnO NPs)及其在柔性气体传感器中的应用。用碱性溶液(pH ≈ 13)合成 RT 氧化锌纳米粒子(RT.pH13)展示了一种合成结晶良好的氧化锌纳米粒子(RT.pH13)的有效方法,其效果可与水热法(hyd.C)合成的氧化锌纳米粒子相媲美。RT.pH13 具有很高的热稳定性,有机残留杂质极少(约 4.2 wt%),粒度分布为 30-80 nm,比表面积为 14 m2 g-1。合成的钙化前和钙化后 RT.pH13 NPs 被集成到柔性传感器中,用于环境条件(RT 和 30-50% 的相对湿度)下的气体传感应用。预煅烧氧化锌传感器(RT.pH13)对苯乙烯和醋酸的灵敏度较高,而对二甲基-6-辛烯醛的灵敏度较低。煅烧过的氧化锌基传感器(RT.pH13.C)对苯乙烯和乙酸的灵敏度较低,但对苯、丙酮和乙醇的灵敏度较高。这表明灵敏度与煅烧后的结构转变之间存在关联。对传感机制的研究突出了表面特性在传感器对特定气体分子的亲和力以及温度和湿度变化中的作用。研究进一步探讨了传感器的机械灵活性,这对于灵活的物联网(IoT)应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信