Tracking the long‐term vegetation and soil characteristics of restored mangroves: a case study from Guyana's coast

IF 2.8 3区 环境科学与生态学 Q2 ECOLOGY
Mark Ram, Marcus Sheaves, Nathan J. Waltham
{"title":"Tracking the long‐term vegetation and soil characteristics of restored mangroves: a case study from Guyana's coast","authors":"Mark Ram, Marcus Sheaves, Nathan J. Waltham","doi":"10.1111/rec.14170","DOIUrl":null,"url":null,"abstract":"The global urgency to halt and reverse mangrove loss has led to the implementation of numerous initiatives to protect and restore mangroves and recover critical ecological functions and services. Restoration success is assessed by estimating mangrove survival, while diversity, vegetation structure, and soil characteristics are often overlooked with no long‐term monitoring. Here, we investigated long‐term changes in vegetation and soil characteristics of Avicennia germinans‐dominated stands planted along Guyana's coast between 5 and 11 years old. A chronosequence approach was used to examine changes in vegetation and soil parameters in restored mangrove stands of different ages compared to natural stands of the same ages. Tree height, diameter, and aboveground biomass were inconsistent between restored and natural mangrove stands. Redundancy analysis (RDA) revealed that the soil properties were the important factors influencing both the restored and natural mangrove communities. There were no clear trajectories between the vegetation and soil characteristics with age, possibly due to site‐specific and hydrodynamic environmental factors, such as tidal dynamics, riverine inputs, and climatic variations. While there were some equivalent vegetation and soil characteristics at the end of the first decade after restoration, the restored mangroves may require a longer timespan (approximately 25 years) than the period overserved in our study to be entirely identical to the natural mangroves. This case study from Guyana provides valuable insights into the ecological processes driving mangrove recovery dynamics, growth patterns, and restoration effectiveness and offers reliable data needed to inform future restoration projects.","PeriodicalId":54487,"journal":{"name":"Restoration Ecology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/rec.14170","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The global urgency to halt and reverse mangrove loss has led to the implementation of numerous initiatives to protect and restore mangroves and recover critical ecological functions and services. Restoration success is assessed by estimating mangrove survival, while diversity, vegetation structure, and soil characteristics are often overlooked with no long‐term monitoring. Here, we investigated long‐term changes in vegetation and soil characteristics of Avicennia germinans‐dominated stands planted along Guyana's coast between 5 and 11 years old. A chronosequence approach was used to examine changes in vegetation and soil parameters in restored mangrove stands of different ages compared to natural stands of the same ages. Tree height, diameter, and aboveground biomass were inconsistent between restored and natural mangrove stands. Redundancy analysis (RDA) revealed that the soil properties were the important factors influencing both the restored and natural mangrove communities. There were no clear trajectories between the vegetation and soil characteristics with age, possibly due to site‐specific and hydrodynamic environmental factors, such as tidal dynamics, riverine inputs, and climatic variations. While there were some equivalent vegetation and soil characteristics at the end of the first decade after restoration, the restored mangroves may require a longer timespan (approximately 25 years) than the period overserved in our study to be entirely identical to the natural mangroves. This case study from Guyana provides valuable insights into the ecological processes driving mangrove recovery dynamics, growth patterns, and restoration effectiveness and offers reliable data needed to inform future restoration projects.
跟踪已恢复红树林的长期植被和土壤特性:圭亚那海岸案例研究
全球急需阻止和扭转红树林的消失,因此实施了许多保护和恢复红树林以及恢复关键生态功能和服务的计划。通过估算红树林的存活率来评估恢复的成功与否,而多样性、植被结构和土壤特性往往被忽视,没有长期监测。在此,我们调查了圭亚那沿海种植 5 至 11 年的以德国红豆杉(Avicennia germinans)为主的植被和土壤特性的长期变化。我们采用时序法研究了不同树龄的恢复红树林植被和土壤参数与相同树龄的自然红树林植被和土壤参数的变化。恢复红树林与自然红树林的树高、直径和地上生物量不一致。冗余分析(RDA)显示,土壤特性是影响修复红树林群落和自然红树林群落的重要因素。植被和土壤特性之间没有明显的年龄轨迹,这可能是由于特定地点和水动力环境因素造成的,如潮汐动态、河流输入和气候变化。虽然在恢复后的第一个十年结束时,植被和土壤特性有一些相同之处,但恢复后的红树林可能需要比我们的研究超期更长的时间(约 25 年)才能与天然红树林完全相同。圭亚那的这一案例研究为了解红树林恢复动态、生长模式和恢复效果的生态过程提供了宝贵的见解,并为未来的恢复项目提供了可靠的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Restoration Ecology
Restoration Ecology 环境科学-生态学
CiteScore
6.50
自引率
15.60%
发文量
226
审稿时长
12-24 weeks
期刊介绍: Restoration Ecology fosters the exchange of ideas among the many disciplines involved with ecological restoration. Addressing global concerns and communicating them to the international research community and restoration practitioners, the journal is at the forefront of a vital new direction in science, ecology, and policy. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias. Contributions span the natural sciences, including ecological and biological aspects, as well as the restoration of soil, air and water when set in an ecological context; and the social sciences, including cultural, philosophical, political, educational, economic and historical aspects. Edited by a distinguished panel, the journal continues to be a major conduit for researchers to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信