Baitong Chen, Jianhua Yang, Wei Lu, W. Pedrycz, Changhai Sun
{"title":"A distributed algorithm with network‐independent step‐size and event‐triggered mechanism for economic dispatch problem","authors":"Baitong Chen, Jianhua Yang, Wei Lu, W. Pedrycz, Changhai Sun","doi":"10.1002/nem.2276","DOIUrl":null,"url":null,"abstract":"The economic dispatch problem (EDP) poses a significant challenge in energy management for modern power systems, particularly as these systems undergo expansion. This growth escalates the demand for communication resources and increases the risk of communication failures. To address this challenge, we propose a distributed algorithm with network‐independent step sizes and an event‐triggered mechanism, which reduces communication requirements and enhances adaptability. Unlike traditional methods, our algorithm uses network‐independent step sizes derived from each agent's local cost functions, thus eliminating the need for detailed network topology knowledge. The theoretical derivation identifies a range of step size values that depend solely on the objective function's strong convexity and the gradient's Lipschitz continuity. Furthermore, the proposed algorithm is shown to achieve a linear convergence rate, assuming the event triggering threshold criteria are met for linear convergence. Numerical experiments further validate the effectiveness and advantages of our proposed distributed algorithm by demonstrating its ability to maintain good convergence characteristics while reducing communication frequency.","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"25 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/nem.2276","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The economic dispatch problem (EDP) poses a significant challenge in energy management for modern power systems, particularly as these systems undergo expansion. This growth escalates the demand for communication resources and increases the risk of communication failures. To address this challenge, we propose a distributed algorithm with network‐independent step sizes and an event‐triggered mechanism, which reduces communication requirements and enhances adaptability. Unlike traditional methods, our algorithm uses network‐independent step sizes derived from each agent's local cost functions, thus eliminating the need for detailed network topology knowledge. The theoretical derivation identifies a range of step size values that depend solely on the objective function's strong convexity and the gradient's Lipschitz continuity. Furthermore, the proposed algorithm is shown to achieve a linear convergence rate, assuming the event triggering threshold criteria are met for linear convergence. Numerical experiments further validate the effectiveness and advantages of our proposed distributed algorithm by demonstrating its ability to maintain good convergence characteristics while reducing communication frequency.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.