The Reflexive H-Strength on Some Graphs

Lusia Herni Sullystiawati, M. Marsidi, Eric Dwi Putra, Ika Hesti Agustin
{"title":"The Reflexive H-Strength on Some Graphs","authors":"Lusia Herni Sullystiawati, M. Marsidi, Eric Dwi Putra, Ika Hesti Agustin","doi":"10.18860/ca.v9i1.23172","DOIUrl":null,"url":null,"abstract":"Let G be a connected, simple, and undirected graph with a vertex set V(G) and an edge set E(G).  The irregular reflexive -labeling is defined by the function  and  such that  if  and  if , where  max . The irregular reflexive  labeling is called an -irregular reflexive -labeling of the graph  if every two different sub graphs  and  isomorphic to  it holds , where  for the sub graph . The minimum  for graph  which has an -irregular reflexive -labelling is called the reflexive  strength of the graph  and denoted by . In this paper we determine the lower bound of the reflexive  strength of some subgraphs,  on , the sub graph  on  the sub graph  on  and the sub graph  on .","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"37 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v9i1.23172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected, simple, and undirected graph with a vertex set V(G) and an edge set E(G).  The irregular reflexive -labeling is defined by the function  and  such that  if  and  if , where  max . The irregular reflexive  labeling is called an -irregular reflexive -labeling of the graph  if every two different sub graphs  and  isomorphic to  it holds , where  for the sub graph . The minimum  for graph  which has an -irregular reflexive -labelling is called the reflexive  strength of the graph  and denoted by . In this paper we determine the lower bound of the reflexive  strength of some subgraphs,  on , the sub graph  on  the sub graph  on  and the sub graph  on .
某些图上的反身 H 强度
设 G 是一个连通、简单、无向的图,具有顶点集 V(G) 和边集 E(G)。 无规则反向标注由函数 和 定义,即如果 和 如果 ,其中 max 。如果每两个不同的子图且与之同构,则称该图的不规则反向标注为不规则反向标注。具有不规则反向标注的图的最小值称为图的反向强度,用 表示。在本文中,我们确定了一些子图的反折强度的下限,分别是 上的子图 上的子图 上的子图 上的子图 和 上的子图 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信