{"title":"A Mathematical Model for Assessing How Obesity-Related Factors Aggravate Diabetes","authors":"Ani Jain, Parimita Roy","doi":"10.1007/s10440-024-00652-3","DOIUrl":null,"url":null,"abstract":"<div><p>Obesity-related factors have been associated with beta cell dysfunction, potentially leading to Type 2 diabetes. To address this issue, we developed a comprehensive obesity-based diabetes model incorporating fat cells, glucose, insulin, and beta cells. We established the model’s global existence, non-negativity, and boundedness. Additionally, we introduced a delay to examine the effects of impaired insulin production resulting from beta-cell dysfunction. Bifurcation analyses were conducted for delay and non-delay models, exploring the model’s dynamic transitions through backward and forward Hopf bifurcations. Utilizing the maximal Pontryagin principle, we formulated and evaluated an optimal control problem to mitigate diabetic complications by reducing the prevalence of overweight individuals and halting disease progression. Comparative graphical outputs were generated to demonstrate the beneficial effects of glucose-regulating medication and regular exercise in managing diabetes.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"191 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00652-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity-related factors have been associated with beta cell dysfunction, potentially leading to Type 2 diabetes. To address this issue, we developed a comprehensive obesity-based diabetes model incorporating fat cells, glucose, insulin, and beta cells. We established the model’s global existence, non-negativity, and boundedness. Additionally, we introduced a delay to examine the effects of impaired insulin production resulting from beta-cell dysfunction. Bifurcation analyses were conducted for delay and non-delay models, exploring the model’s dynamic transitions through backward and forward Hopf bifurcations. Utilizing the maximal Pontryagin principle, we formulated and evaluated an optimal control problem to mitigate diabetic complications by reducing the prevalence of overweight individuals and halting disease progression. Comparative graphical outputs were generated to demonstrate the beneficial effects of glucose-regulating medication and regular exercise in managing diabetes.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.