Asymptotic analysis of fundamental solution of multi-dimensional distributed-order time-fractional diffusion equation with unit density function

Arman Kalvari Hashemzadeh, Alireza Ansari, Hassan Askari
{"title":"Asymptotic analysis of fundamental solution of multi-dimensional distributed-order time-fractional diffusion equation with unit density function","authors":"Arman Kalvari Hashemzadeh, Alireza Ansari, Hassan Askari","doi":"10.1088/1751-8121/ad4ca9","DOIUrl":null,"url":null,"abstract":"\n In this paper, we consider the multi-dimensional distributed-order time-fractional diffusion equation with the unit density function. We introduce the new Volterra-Bessel function and give the integral representations of fundamental solutions of equations in terms of this function in the whole- and half-space. The fractional moments of fundamental solutions are also provided in the higher dimensions using the Mellin transforms. We further apply steepest descent method to find the asymptotic behaviors of solutions using the Schl\"{a}fli integral of the Volterra-Bessel function. In this respect, we study the asymptotic analysis of the Volterra-Bessel function with the large parameters, and subsequently obtain the asymptotic behaviors of fundamental solutions with a discussion on the large space variable, large time variable, higher dimensions and small diffusivity constant.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"53 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4ca9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the multi-dimensional distributed-order time-fractional diffusion equation with the unit density function. We introduce the new Volterra-Bessel function and give the integral representations of fundamental solutions of equations in terms of this function in the whole- and half-space. The fractional moments of fundamental solutions are also provided in the higher dimensions using the Mellin transforms. We further apply steepest descent method to find the asymptotic behaviors of solutions using the Schl"{a}fli integral of the Volterra-Bessel function. In this respect, we study the asymptotic analysis of the Volterra-Bessel function with the large parameters, and subsequently obtain the asymptotic behaviors of fundamental solutions with a discussion on the large space variable, large time variable, higher dimensions and small diffusivity constant.
带单位密度函数的多维分布阶时间-分数扩散方程基本解的渐近分析
在本文中,我们考虑了具有单位密度函数的多维分布阶时间分数扩散方程。我们引入了新的 Volterra-Bessel 函数,并给出了该函数在全空间和半空间的基本方程解的积分表示。我们还利用梅林变换提供了基本解在更高维度上的分数矩。我们进一步采用最陡下降法,利用 Volterra-Bessel 函数的 Schl"{a}fli 积分来寻找解的渐近行为。在这方面,我们研究了大参数 Volterra-Bessel 函数的渐近分析,随后通过对大空间变量、大时间变量、高维度和小扩散常数的讨论,得到了基本解的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信