{"title":"Solving Nonlinear Second-Order ODEs via the Eisenhart Lift and Linearization","authors":"A. Paliathanasis","doi":"10.3390/axioms13050331","DOIUrl":null,"url":null,"abstract":"The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The research underscores the effectiveness of this geometric approach in the linearization of a class of Newtonian systems that cannot be linearized through symmetry analysis.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"118 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The linearization of nonlinear differential equations represents a robust approach to solution derivation, typically achieved through Lie symmetry analysis. This study adopts a geometric methodology grounded in the Eisenhart lift, revealing transformative techniques that linearize a set of second-order ordinary differential equations. The research underscores the effectiveness of this geometric approach in the linearization of a class of Newtonian systems that cannot be linearized through symmetry analysis.