Transforming Screening, Risk Stratification, and Treatment Optimization in Chronic Liver Disease Through Data Science and translational Innovation

T. Addissouky
{"title":"Transforming Screening, Risk Stratification, and Treatment Optimization in Chronic Liver Disease Through Data Science and translational Innovation","authors":"T. Addissouky","doi":"10.24871/251202453-62","DOIUrl":null,"url":null,"abstract":"Background: Chronic liver diseases continue to face challenges in prognosis, treatment selection, disease mechanisms, screening, and therapeutic optimization. Promising innovations could address these gaps through data integration and novel analytic approaches.Main Body: MAPS-CRAFITY integrating clinical variables, AFP, and CT/MRI findings, and transformer modeling of RFA data improve HCC outcome prediction to guide management. Analyses revealing IL21R as a PBC susceptibility gene and implicating dysfunctional VWF processing in portal hypertension deliver mechanistic insights. Quantifying childhood MAFLD informs screening needs, while supporting use of G6PD deficient liver donors enables transplantation access expansion through risk stratification. Updating Baveno criteria enhances PBC prognosis, and an HCC prognostic score identifies optimal RFA candidates to maximize treatment efficacy.Conclusion: Recent research leverages diverse data types, genetics, imaging, and machine learning to develop integrated predictive systems that allow more personalized therapy selection. Elucidating molecular pathways provides therapeutic targets and prognostic biomarkers. Evidence-based screening and risk models facilitate delivering tailored interventions. Optimization of current modalities through prognostic validation and patient selection improves real-world effectiveness. Multifaceted modern research approaches promise to address unmet needs and transform hepatology care.","PeriodicalId":515400,"journal":{"name":"The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24871/251202453-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic liver diseases continue to face challenges in prognosis, treatment selection, disease mechanisms, screening, and therapeutic optimization. Promising innovations could address these gaps through data integration and novel analytic approaches.Main Body: MAPS-CRAFITY integrating clinical variables, AFP, and CT/MRI findings, and transformer modeling of RFA data improve HCC outcome prediction to guide management. Analyses revealing IL21R as a PBC susceptibility gene and implicating dysfunctional VWF processing in portal hypertension deliver mechanistic insights. Quantifying childhood MAFLD informs screening needs, while supporting use of G6PD deficient liver donors enables transplantation access expansion through risk stratification. Updating Baveno criteria enhances PBC prognosis, and an HCC prognostic score identifies optimal RFA candidates to maximize treatment efficacy.Conclusion: Recent research leverages diverse data types, genetics, imaging, and machine learning to develop integrated predictive systems that allow more personalized therapy selection. Elucidating molecular pathways provides therapeutic targets and prognostic biomarkers. Evidence-based screening and risk models facilitate delivering tailored interventions. Optimization of current modalities through prognostic validation and patient selection improves real-world effectiveness. Multifaceted modern research approaches promise to address unmet needs and transform hepatology care.
通过数据科学和转化创新实现慢性肝病筛查、风险分层和治疗优化的变革
背景:慢性肝病在预后、治疗选择、疾病机制、筛查和治疗优化方面仍面临挑战。有希望的创新可以通过数据整合和新颖的分析方法解决这些差距:MAPS-CRAFITY整合了临床变量、甲胎蛋白、CT/MRI结果,并对RFA数据进行了变压器建模,从而改善了HCC的预后预测,为治疗提供了指导。通过分析发现IL21R是PBC易感基因,并揭示了门静脉高压症中VWF处理功能障碍的机理。对儿童 MAFLD 进行量化可为筛查需求提供信息,而支持使用 G6PD 缺乏的肝脏捐献者可通过风险分层扩大移植的可及性。更新Baveno标准可提高PBC的预后,HCC预后评分可确定最佳RFA候选者,从而最大限度地提高治疗效果:最近的研究利用不同的数据类型、遗传学、影像学和机器学习来开发综合预测系统,从而实现更个性化的治疗选择。阐明分子通路可提供治疗靶点和预后生物标志物。基于证据的筛查和风险模型有助于提供量身定制的干预措施。通过预后验证和患者选择来优化目前的治疗模式,从而提高实际疗效。多方面的现代研究方法有望满足尚未满足的需求并改变肝病治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信