Wanyuan Wang, Qian Che, Yifeng Zhou, Weiwei Wu, Bo An, Yichuan Jiang
{"title":"Offline policy reuse-guided anytime online collective multiagent planning and its application to mobility-on-demand systems","authors":"Wanyuan Wang, Qian Che, Yifeng Zhou, Weiwei Wu, Bo An, Yichuan Jiang","doi":"10.1007/s10458-024-09650-z","DOIUrl":null,"url":null,"abstract":"<div><p>The popularity of mobility-on-demand (MoD) systems boosts online collective multiagent planning (Online_CMP), where spatially distributed servicing agents are planned to meet dynamically arriving demands. For city-scale MoDs with a fleet of agents, Online_CMP methods must make a tradeoff between computation time (i.e., real-time) and solution quality (i.e., the number of demands served). Directly using an offline policy can guarantee real-time, but cannot be dynamically adjusted to real agent and demand distributions. Search-based online planning methods are adaptive, but are computationally expensive and cannot scale up. In this paper, we propose a principled Online_CMP method, which reuses and improves the offline policy in an anytime manner. We first model MoDs as a collective Markov Decision Process (<span>\\({\\mathbb {C}}\\)</span>-MDP) where the collective behavior of agents affects the joint reward. Given the <span>\\({\\mathbb {C}}\\)</span>-MDP model, we propose a novel state value function to evaluate the policy, and a gradient ascent (GA) technique to improve the policy. We further show that offline GA-based policy iteration (GA-PI) can converge to global optima of <span>\\({\\mathbb {C}}\\)</span>-MDP under certain conditions. Finally, with real-time information, the offline policy is used as the default plan, GA-PI is used to improve it and generate an online plan. Experimental results show that our offline policy reuse-guided Online_CMP method significantly outperforms standard online multiagent planning methods on MoD systems like ride-sharing and security traffic patrolling in terms of computation time and solution quality.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09650-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The popularity of mobility-on-demand (MoD) systems boosts online collective multiagent planning (Online_CMP), where spatially distributed servicing agents are planned to meet dynamically arriving demands. For city-scale MoDs with a fleet of agents, Online_CMP methods must make a tradeoff between computation time (i.e., real-time) and solution quality (i.e., the number of demands served). Directly using an offline policy can guarantee real-time, but cannot be dynamically adjusted to real agent and demand distributions. Search-based online planning methods are adaptive, but are computationally expensive and cannot scale up. In this paper, we propose a principled Online_CMP method, which reuses and improves the offline policy in an anytime manner. We first model MoDs as a collective Markov Decision Process (\({\mathbb {C}}\)-MDP) where the collective behavior of agents affects the joint reward. Given the \({\mathbb {C}}\)-MDP model, we propose a novel state value function to evaluate the policy, and a gradient ascent (GA) technique to improve the policy. We further show that offline GA-based policy iteration (GA-PI) can converge to global optima of \({\mathbb {C}}\)-MDP under certain conditions. Finally, with real-time information, the offline policy is used as the default plan, GA-PI is used to improve it and generate an online plan. Experimental results show that our offline policy reuse-guided Online_CMP method significantly outperforms standard online multiagent planning methods on MoD systems like ride-sharing and security traffic patrolling in terms of computation time and solution quality.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.