Amir Ahmadi, Faezeh Zaefarian, Mohammad Rezvani, Irandokht Mansouri, Brian M. Sindel
{"title":"Response of spiny cocklebur (Xanthium spinosum) and common cocklebur (X. strumarium) seed germination to environmental and soil factors","authors":"Amir Ahmadi, Faezeh Zaefarian, Mohammad Rezvani, Irandokht Mansouri, Brian M. Sindel","doi":"10.1071/bt23094","DOIUrl":null,"url":null,"abstract":"Context Seed germination and seedling emergence are affected by many environmental factors. Knowledge regarding factors affecting seed germination of spiny cocklebur (Xanthium spinosum L.) and common cocklebur (X. strumarium L.) could help determine their potential distribution and control strategies. Aims The present study was conducted to investigate the effect of key environmental factors on seed germination and seedling emergence of spiny cocklebur and common cocklebur. Methods Seed germination of spiny cocklebur and common cocklebur was tested at various constant and alternating temperatures, pH, salinity and moisture stress. The effect of flooding height, burial depth and soil type on seedling emergence was also investigated. Key results The optimum constant temperature for germination of spiny cocklebur was 25°C, and 35°C and higher for common cocklebur. Under alternating temperature, maximal germination was at 25/15°C and 35/15°C for spiny cocklebur and common cocklebur, respectively. Maximum germination of both spiny cocklebur and common cocklebur was at neutral pH. Spiny cocklebur germination was not suppressed as much by lower and higher pH or by an increasing salinity as was common cocklebur germination. Conclusions Common cocklebur appears to be better adapted to warmer environments than is spiny cocklebur, but less so to a broad range of soil pH and salinity stress. Implications The different germination responses of common cocklebur and spiny cocklebur to the environmental factors of temperature, pH and salinity imply that the two species may occupy different niches across the landscape. Our knowledge of these responses can help in identifying potential areas for invasion for increased monitoring and management.","PeriodicalId":8607,"journal":{"name":"Australian Journal of Botany","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/bt23094","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Context Seed germination and seedling emergence are affected by many environmental factors. Knowledge regarding factors affecting seed germination of spiny cocklebur (Xanthium spinosum L.) and common cocklebur (X. strumarium L.) could help determine their potential distribution and control strategies. Aims The present study was conducted to investigate the effect of key environmental factors on seed germination and seedling emergence of spiny cocklebur and common cocklebur. Methods Seed germination of spiny cocklebur and common cocklebur was tested at various constant and alternating temperatures, pH, salinity and moisture stress. The effect of flooding height, burial depth and soil type on seedling emergence was also investigated. Key results The optimum constant temperature for germination of spiny cocklebur was 25°C, and 35°C and higher for common cocklebur. Under alternating temperature, maximal germination was at 25/15°C and 35/15°C for spiny cocklebur and common cocklebur, respectively. Maximum germination of both spiny cocklebur and common cocklebur was at neutral pH. Spiny cocklebur germination was not suppressed as much by lower and higher pH or by an increasing salinity as was common cocklebur germination. Conclusions Common cocklebur appears to be better adapted to warmer environments than is spiny cocklebur, but less so to a broad range of soil pH and salinity stress. Implications The different germination responses of common cocklebur and spiny cocklebur to the environmental factors of temperature, pH and salinity imply that the two species may occupy different niches across the landscape. Our knowledge of these responses can help in identifying potential areas for invasion for increased monitoring and management.
期刊介绍:
Australian Journal of Botany is an international journal for publication of original research in plant science. We seek papers of broad interest with relevance to Southern Hemisphere ecosystems. Our scope encompasses all approaches to understanding plant biology.
Australian Journal of Botany is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.