A two-dimensional elastic contact problem with unilateral constraints

M. Sofonea, Á. Arós
{"title":"A two-dimensional elastic contact problem with unilateral constraints","authors":"M. Sofonea, Á. Arós","doi":"10.1177/10812865241247807","DOIUrl":null,"url":null,"abstract":"We consider a mathematical model which describes the equilibrium of two elastic membranes fixed on their boundary and attached to an adhesive body, say a glue. The variational formulation of the model is in a form of an elliptic quasivariational inequality for the displacement field. We prove the unique weak solvability of the model, and then we state and prove a convergence result, for which we provide the corresponding mechanical interpretation. Next, we consider two associated optimization problems for which we provide existence results. Finally, we the present numerical simulation which validates our convergence result. We end this paper with some concluding remarks and an Appendix, in which we present the preliminary material needed in this paper.","PeriodicalId":502792,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865241247807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a mathematical model which describes the equilibrium of two elastic membranes fixed on their boundary and attached to an adhesive body, say a glue. The variational formulation of the model is in a form of an elliptic quasivariational inequality for the displacement field. We prove the unique weak solvability of the model, and then we state and prove a convergence result, for which we provide the corresponding mechanical interpretation. Next, we consider two associated optimization problems for which we provide existence results. Finally, we the present numerical simulation which validates our convergence result. We end this paper with some concluding remarks and an Appendix, in which we present the preliminary material needed in this paper.
具有单边约束条件的二维弹性接触问题
我们考虑了一个数学模型,该模型描述了两个固定在其边界上的弹性膜与一个粘合体(如胶水)之间的平衡关系。该模型的变分形式是位移场的椭圆准变分不等式。我们证明了模型的唯一弱可解性,然后阐述并证明了收敛结果,并给出了相应的力学解释。接下来,我们考虑了两个相关的优化问题,并给出了存在性结果。最后,我们通过数值模拟验证了收敛结果。最后,我们以一些结束语和附录结束本文,附录中我们介绍了本文所需的初步材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信