Highly Transparent and Flexible All-Nanofiber-Based Piezocomposite Containing BaTiO3-Embedded P(VDF-TrFE) Nanofibers for Harvesting and Monitoring Human Kinetic Movements
IF 17.2 1区 工程技术Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kiyong Kim, Daekyu Choi, Sangmin Ji, Freddy Baltazar Iniguez, Young Jae Song, Sam S. Yoon, Junki Kim, Seongpil An
{"title":"Highly Transparent and Flexible All-Nanofiber-Based Piezocomposite Containing BaTiO3-Embedded P(VDF-TrFE) Nanofibers for Harvesting and Monitoring Human Kinetic Movements","authors":"Kiyong Kim, Daekyu Choi, Sangmin Ji, Freddy Baltazar Iniguez, Young Jae Song, Sam S. Yoon, Junki Kim, Seongpil An","doi":"10.1007/s42765-024-00406-8","DOIUrl":null,"url":null,"abstract":"<div><p>We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators (PENGs) consisting of piezoelectric nanofiber (NF) mats and metal-electroplated microfiber (MF) electrodes using electrospinning and electroplating methods. Percolative non-woven structure and high flexibility of the NF mats and MF electrodes allowed us to achieve highly transparent and flexible piezocomposites. A viscoelastic solution, mixed with P(VDF-TrFE) and BaTiO<sub>3</sub>, was electrospun into piezoelectric NFs with a piezoelectric coefficient <i>d</i><sub>33</sub> of 21.2 pC/N. In addition, the combination of electrospinning and electroplating techniques enabled the fabrication of Ni-plated MF-based transparent conductive electrodes (TCEs), contributing to the high transparency of the resulting piezocomposite. The energy-harvesting efficiencies of the BaTiO<sub>3</sub>-embedded NF-based PENGs with transmittances of 86% and 80% were 200 and 240 V/MPa, respectively, marking the highest values in their class. Moreover, the output voltage driven by the coupling effect of piezoelectricity and triboelectricity during finger tapping was 25.7 V. These highly efficient energy-harvesting performances, along with the transparent and flexible features of the PENGs, hold great promise for body-attachable energy-harvesting and sensing devices, as demonstrated in this study.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1369 - 1386"},"PeriodicalIF":17.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00406-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed kinetic energy-harvestable and kinetic movement-detectable piezoelectric nanogenerators (PENGs) consisting of piezoelectric nanofiber (NF) mats and metal-electroplated microfiber (MF) electrodes using electrospinning and electroplating methods. Percolative non-woven structure and high flexibility of the NF mats and MF electrodes allowed us to achieve highly transparent and flexible piezocomposites. A viscoelastic solution, mixed with P(VDF-TrFE) and BaTiO3, was electrospun into piezoelectric NFs with a piezoelectric coefficient d33 of 21.2 pC/N. In addition, the combination of electrospinning and electroplating techniques enabled the fabrication of Ni-plated MF-based transparent conductive electrodes (TCEs), contributing to the high transparency of the resulting piezocomposite. The energy-harvesting efficiencies of the BaTiO3-embedded NF-based PENGs with transmittances of 86% and 80% were 200 and 240 V/MPa, respectively, marking the highest values in their class. Moreover, the output voltage driven by the coupling effect of piezoelectricity and triboelectricity during finger tapping was 25.7 V. These highly efficient energy-harvesting performances, along with the transparent and flexible features of the PENGs, hold great promise for body-attachable energy-harvesting and sensing devices, as demonstrated in this study.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.