Why the Laplace Resonant Angle is So Special

D. Christodoulou, S. Laycock, D. Kazanas
{"title":"Why the Laplace Resonant Angle is So Special","authors":"D. Christodoulou, S. Laycock, D. Kazanas","doi":"10.3847/2515-5172/ad4be8","DOIUrl":null,"url":null,"abstract":"\n We analyze adjacent local pairs of mean-motion resonances (MMRs) between three orbiting bodies designed to produce a Laplace resonant phase angle φ\n L or one of its multiples N\n φ\n L, where integer N ≥ 2. This assumption yields a concrete pattern of Laplace resonances, very few of which (with angles φ\n L and 2φ\n L) have been observed in actual (extra)solar subsystems. All other MMRs face issues of proximity or remoteness of the orbits (they are too close or too far apart). We highlight one as yet unobservable MMR in each N-sequence for which these issues appear to be less acute.","PeriodicalId":74684,"journal":{"name":"Research notes of the AAS","volume":"57 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research notes of the AAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2515-5172/ad4be8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze adjacent local pairs of mean-motion resonances (MMRs) between three orbiting bodies designed to produce a Laplace resonant phase angle φ L or one of its multiples N φ L, where integer N ≥ 2. This assumption yields a concrete pattern of Laplace resonances, very few of which (with angles φ L and 2φ L) have been observed in actual (extra)solar subsystems. All other MMRs face issues of proximity or remoteness of the orbits (they are too close or too far apart). We highlight one as yet unobservable MMR in each N-sequence for which these issues appear to be less acute.
拉普拉斯谐振角为何如此特别
我们分析了三个轨道天体之间相邻的局部平均运动共振(MMR)对,旨在产生拉普拉斯共振相位角φ L 或其倍数之一 N φ L,其中整数 N ≥ 2。这一假设产生了拉普拉斯共振的具体模式,在实际(太阳系外)子系统中观测到的拉普拉斯共振(角度φ L 和 2φ L)非常少。所有其他的多轨道卫星都面临着轨道太近或太远的问题(它们之间的距离太近或太远)。我们将重点介绍每个N序列中一个尚未观测到的MMR,这些问题似乎并不那么尖锐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信