Effect of Hydrogen Charging on the Mechanical Properties of High-Strength Copper-Base Alloys, Austenitic Stainless Steel AISI 321, Inconel 625 and Ferritic Steel 1.4511

Metals Pub Date : 2024-05-17 DOI:10.3390/met14050588
J. Jürgensen, Andreas Frehn, Klaus Ohla, Sandra Stolz, Michael Pohl
{"title":"Effect of Hydrogen Charging on the Mechanical Properties of High-Strength Copper-Base Alloys, Austenitic Stainless Steel AISI 321, Inconel 625 and Ferritic Steel 1.4511","authors":"J. Jürgensen, Andreas Frehn, Klaus Ohla, Sandra Stolz, Michael Pohl","doi":"10.3390/met14050588","DOIUrl":null,"url":null,"abstract":"Hydrogen embrittlement (HE) poses the risk of premature failure for many metals, especially high-strength steels. Due to the utilization of hydrogen as an environmentally friendly energy source, efforts are made to improve the resistance to HE at elevated pressures and temperatures. In addition, applications in hydrogen environments might require specific material properties in terms of thermal and electrical conductivity, magnetic properties as well as corrosion resistance. In the present study, three high-strength Cu-base alloys (Alloy 25, PerforMet® and ToughMet® 3) as well as austenitic stainless AISI 321, Ni-base alloy IN 625 and ferritic steel 1.4511 are charged in pressurized hydrogen and subsequently tested by means of Slow Strain Rate Testing (SSRT). The results show that high-strength Cu-base alloys exhibit a great resistance to HE and could prove to be suitable for materials for a variety of hydrogen applications with rough conditions such as high pressure, elevated temperature and corrosive environments.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"90 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14050588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen embrittlement (HE) poses the risk of premature failure for many metals, especially high-strength steels. Due to the utilization of hydrogen as an environmentally friendly energy source, efforts are made to improve the resistance to HE at elevated pressures and temperatures. In addition, applications in hydrogen environments might require specific material properties in terms of thermal and electrical conductivity, magnetic properties as well as corrosion resistance. In the present study, three high-strength Cu-base alloys (Alloy 25, PerforMet® and ToughMet® 3) as well as austenitic stainless AISI 321, Ni-base alloy IN 625 and ferritic steel 1.4511 are charged in pressurized hydrogen and subsequently tested by means of Slow Strain Rate Testing (SSRT). The results show that high-strength Cu-base alloys exhibit a great resistance to HE and could prove to be suitable for materials for a variety of hydrogen applications with rough conditions such as high pressure, elevated temperature and corrosive environments.
充氢对高强度铜基合金、奥氏体不锈钢 AISI 321、铬镍铁合金 625 和铁素体钢 1.4511 机械性能的影响
氢脆(HE)给许多金属,尤其是高强度钢带来过早失效的风险。由于氢是一种环境友好型能源,人们正在努力提高氢在高压和高温下的抗脆性。此外,氢环境中的应用可能要求材料在导热性、导电性、磁性和耐腐蚀性方面具有特定的性能。在本研究中,三种高强度铜基合金(Alloy 25、PerforMet® 和 ToughMet® 3)以及奥氏体不锈钢 AISI 321、镍基合金 IN 625 和铁素体钢 1.4511 都充入了加压氢气,随后通过慢应变速率测试 (SSRT) 进行了测试。结果表明,高强度铜基合金对 HE 具有很强的抵抗力,可证明是适用于高压、高温和腐蚀性环境等恶劣条件下各种氢气应用的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信