Groups whose proper subgroups of infinite rank have a permutability transitive relation

Pub Date : 2024-05-17 DOI:10.1515/jgth-2023-0296
Adolfo Ballester Bolinches, Maria De Falco, Francesco de Giovanni, Carmela Musella
{"title":"Groups whose proper subgroups of infinite rank have a permutability transitive relation","authors":"Adolfo Ballester Bolinches, Maria De Falco, Francesco de Giovanni, Carmela Musella","doi":"10.1515/jgth-2023-0296","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let 𝐺 be a group.\nA subgroup 𝐻 of 𝐺 is called permutable if <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:mi>H</m:mi>\n <m:mo>⁢</m:mo>\n <m:mi>X</m:mi>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mi>X</m:mi>\n <m:mo>⁢</m:mo>\n <m:mi>H</m:mi>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0001.png\"/>\n <jats:tex-math>HX=XH</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> for all subgroups 𝑋 of 𝐺.\nPermutability is not in general a transitive relation, and 𝐺 is called a <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>PT</m:mi>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0002.png\"/>\n <jats:tex-math>\\mathrm{PT}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-group if, whenever 𝐾 is a permutable subgroup of 𝐺 and 𝐻 is a permutable subgroup of 𝐾, we always have that 𝐻 is permutable in 𝐺. The property <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>PT</m:mi>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0002.png\"/>\n <jats:tex-math>\\mathrm{PT}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is not inherited by subgroups, and 𝐺 is called a <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mover accent=\"true\">\n <m:mi>PT</m:mi>\n <m:mo>̄</m:mo>\n </m:mover>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0004.png\"/>\n <jats:tex-math>\\overline{\\mathrm{PT}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-group if all its subgroups have the <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>PT</m:mi>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0002.png\"/>\n <jats:tex-math>\\mathrm{PT}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-property.\nWe prove that if 𝐺 is a soluble group of infinite rank whose proper subgroups of infinite rank have the <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>PT</m:mi>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0002.png\"/>\n <jats:tex-math>\\mathrm{PT}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-property, then 𝐺 is a <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mover accent=\"true\">\n <m:mi>PT</m:mi>\n <m:mo>̄</m:mo>\n </m:mover>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0296_ineq_0004.png\"/>\n <jats:tex-math>\\overline{\\mathrm{PT}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-group.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝐺 be a group. A subgroup 𝐻 of 𝐺 is called permutable if H X = X H HX=XH for all subgroups 𝑋 of 𝐺. Permutability is not in general a transitive relation, and 𝐺 is called a PT \mathrm{PT} -group if, whenever 𝐾 is a permutable subgroup of 𝐺 and 𝐻 is a permutable subgroup of 𝐾, we always have that 𝐻 is permutable in 𝐺. The property PT \mathrm{PT} is not inherited by subgroups, and 𝐺 is called a PT ̄ \overline{\mathrm{PT}} -group if all its subgroups have the PT \mathrm{PT} -property. We prove that if 𝐺 is a soluble group of infinite rank whose proper subgroups of infinite rank have the PT \mathrm{PT} -property, then 𝐺 is a PT ̄ \overline{\mathrm{PT}} -group.
分享
查看原文
无穷级的适当子群具有可变传递关系的群
让𝐺是一个群。如果对于𝐺的所有子群𝑋来说,H X = X HX=XH ,那么𝐺的子群𝐻就叫做可周遍群。可周遍性在一般情况下不是一个传递关系,如果,只要𝐺是𝐺的可周遍子群,并且𝐻是𝐺的可周遍子群,我们总是有𝐻在𝐺中是可周遍的,那么𝐺就叫做PT \mathrm{PT} -群。子群不会继承 PT \mathrm{PT} 的属性,如果𝐺 的所有子群都是可变子群,那么𝐺 被称为 PT ̄ \overline\mathrm{PT}} 。 -我们证明,如果𝐺是一个无穷秩的可解群,其无穷秩的适当子群具有 PT \mathrm{PT} -属性,那么𝐺就是一个 PT ̄ \overline\mathrm{PT}} -群。 -群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信