{"title":"An exactly divergence-free hybridized discontinuous Galerkin method for the generalized Boussinesq equations with singular heat source","authors":"Haitao Leng","doi":"10.1051/m2an/2024037","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to propose and analyze a hybridized discontinuous Galerkin (HDG) method for the generalized Boussinesq equations with singular heat source. We use polynomials of order k, k−1 and k to approximate the velocity, the pressure and the temperature. By introducing Lagrange multipliers for the pressure, the approximate velocity field obtained by the HDG method is shown to be exactly divergence-free and H(div)-conforming. Under a smallness assumption on the problem data and solutions, we prove by Brouwer’s fixed point theorem that the discrete system has a solution in two dimensions. If the viscosity and thermal conductivity are further assumed to be positive constants, a priori error estimates with convergence rate O(h) and efficient and reliable a posteriori error estimates are derived. Finally numerical examples illustrate the theoretical analysis and show the performance of the obtained a posteriori error estimator.\n\n1991 Mathematics Subject Classification\n\n65N12, 65N30, 65N50, 76N05.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to propose and analyze a hybridized discontinuous Galerkin (HDG) method for the generalized Boussinesq equations with singular heat source. We use polynomials of order k, k−1 and k to approximate the velocity, the pressure and the temperature. By introducing Lagrange multipliers for the pressure, the approximate velocity field obtained by the HDG method is shown to be exactly divergence-free and H(div)-conforming. Under a smallness assumption on the problem data and solutions, we prove by Brouwer’s fixed point theorem that the discrete system has a solution in two dimensions. If the viscosity and thermal conductivity are further assumed to be positive constants, a priori error estimates with convergence rate O(h) and efficient and reliable a posteriori error estimates are derived. Finally numerical examples illustrate the theoretical analysis and show the performance of the obtained a posteriori error estimator.
1991 Mathematics Subject Classification
65N12, 65N30, 65N50, 76N05.