Points of interest linear attention network for real-time non-rigid liver volume to surface registration.

Medical physics Pub Date : 2024-05-17 DOI:10.1002/mp.17108
Zeming Chen, Beiji Zou, Xiaoyan Kui, Yangyang Shi, Ding Lv, Liming Chen
{"title":"Points of interest linear attention network for real-time non-rigid liver volume to surface registration.","authors":"Zeming Chen, Beiji Zou, Xiaoyan Kui, Yangyang Shi, Ding Lv, Liming Chen","doi":"10.1002/mp.17108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In laparoscopic liver surgery, accurately predicting the displacement of key intrahepatic anatomical structures is crucial for informing the doctor's intraoperative decision-making. However, due to the constrained surgical perspective, only a partial surface of the liver is typically visible. Consequently, the utilization of non-rigid volume to surface registration methods becomes essential. But traditional registration methods lack the necessary accuracy and cannot meet real-time requirements.</p><p><strong>Purpose: </strong>To achieve high-precision liver registration with only partial surface information and estimate the displacement of internal liver tissues in real-time.</p><p><strong>Methods: </strong>We propose a novel neural network architecture tailored for real-time non-rigid liver volume to surface registration. The network utilizes a voxel-based method, integrating sparse convolution with the newly proposed points of interest (POI) linear attention module. POI linear attention module specifically calculates attention on the previously extracted POI. Additionally, we identified the most suitable normalization method RMSINorm.</p><p><strong>Results: </strong>We evaluated our proposed network and other networks on a dataset generated from real liver models and two real datasets. Our method achieves an average error of 4.23 mm and a mean frame rate of 65.4 fps in the generation dataset. It also achieves an average error of 8.29 mm in the human breathing motion dataset.</p><p><strong>Conclusions: </strong>Our network outperforms CNN-based networks and other attention networks in terms of accuracy and inference speed.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In laparoscopic liver surgery, accurately predicting the displacement of key intrahepatic anatomical structures is crucial for informing the doctor's intraoperative decision-making. However, due to the constrained surgical perspective, only a partial surface of the liver is typically visible. Consequently, the utilization of non-rigid volume to surface registration methods becomes essential. But traditional registration methods lack the necessary accuracy and cannot meet real-time requirements.

Purpose: To achieve high-precision liver registration with only partial surface information and estimate the displacement of internal liver tissues in real-time.

Methods: We propose a novel neural network architecture tailored for real-time non-rigid liver volume to surface registration. The network utilizes a voxel-based method, integrating sparse convolution with the newly proposed points of interest (POI) linear attention module. POI linear attention module specifically calculates attention on the previously extracted POI. Additionally, we identified the most suitable normalization method RMSINorm.

Results: We evaluated our proposed network and other networks on a dataset generated from real liver models and two real datasets. Our method achieves an average error of 4.23 mm and a mean frame rate of 65.4 fps in the generation dataset. It also achieves an average error of 8.29 mm in the human breathing motion dataset.

Conclusions: Our network outperforms CNN-based networks and other attention networks in terms of accuracy and inference speed.

用于非刚性肝脏体积与表面实时配准的兴趣点线性注意网络。
背景:在腹腔镜肝脏手术中,准确预测肝内关键解剖结构的移位对医生术中决策至关重要。然而,由于手术视角受限,通常只能看到肝脏的部分表面。因此,利用非刚性体积到表面的配准方法变得至关重要。目的:在只有部分表面信息的情况下实现高精度肝脏配准,并实时估计肝脏内部组织的位移:方法:我们提出了一种新颖的神经网络架构,专门用于非刚性肝脏体积与表面的实时配准。该网络采用基于体素的方法,将稀疏卷积与新提出的兴趣点(POI)线性注意模块相结合。兴趣点线性关注模块专门计算先前提取的兴趣点的关注度。此外,我们还确定了最合适的归一化方法 RMSINorm:我们在由真实肝脏模型生成的数据集和两个真实数据集上评估了我们提出的网络和其他网络。在生成数据集中,我们的方法实现了 4.23 mm 的平均误差和 65.4 fps 的平均帧率。在人类呼吸运动数据集中,它也实现了 8.29 毫米的平均误差:我们的网络在准确性和推理速度方面都优于基于 CNN 的网络和其他注意力网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信