Tutorial on MUedit: An open-source software for identifying and analysing the discharge timing of motor units from electromyographic signals

IF 2 4区 医学 Q3 NEUROSCIENCES
Simon Avrillon , François Hug , Stuart N Baker , Ciara Gibbs , Dario Farina
{"title":"Tutorial on MUedit: An open-source software for identifying and analysing the discharge timing of motor units from electromyographic signals","authors":"Simon Avrillon ,&nbsp;François Hug ,&nbsp;Stuart N Baker ,&nbsp;Ciara Gibbs ,&nbsp;Dario Farina","doi":"10.1016/j.jelekin.2024.102886","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the open-source software MUedit and we describe its use for identifying the discharge timing of motor units from all types of electromyographic (EMG) signals recorded with multi-channel systems. MUedit performs EMG decomposition using a blind-source separation approach. Following this, users can display the estimated motor unit pulse trains and inspect the accuracy of the automatic detection of discharge times. When necessary, users can correct the automatic detection of discharge times and recalculate the motor unit pulse train with an updated separation vector. Here, we provide an open-source software and a tutorial that guides the user through (i) the parameters and steps of the decomposition algorithm, and (ii) the manual editing of motor unit pulse trains. Further, we provide simulated and experimental EMG signals recorded with grids of surface electrodes and intramuscular electrode arrays to benchmark the performance of MUedit. Finally, we discuss advantages and limitations of the blind-source separation approach for the study of motor unit behaviour during tonic muscle contractions.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"77 ","pages":"Article 102886"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the open-source software MUedit and we describe its use for identifying the discharge timing of motor units from all types of electromyographic (EMG) signals recorded with multi-channel systems. MUedit performs EMG decomposition using a blind-source separation approach. Following this, users can display the estimated motor unit pulse trains and inspect the accuracy of the automatic detection of discharge times. When necessary, users can correct the automatic detection of discharge times and recalculate the motor unit pulse train with an updated separation vector. Here, we provide an open-source software and a tutorial that guides the user through (i) the parameters and steps of the decomposition algorithm, and (ii) the manual editing of motor unit pulse trains. Further, we provide simulated and experimental EMG signals recorded with grids of surface electrodes and intramuscular electrode arrays to benchmark the performance of MUedit. Finally, we discuss advantages and limitations of the blind-source separation approach for the study of motor unit behaviour during tonic muscle contractions.

MUedit 教程:从肌电信号中识别和分析运动单元放电时间的开源软件。
我们介绍了开源软件 MUedit,并介绍了该软件用于从多通道系统记录的各类肌电图(EMG)信号中识别运动单元的放电时间。MUedit 采用盲源分离方法进行 EMG 分解。随后,用户可以显示估计的运动单元脉冲串,并检查自动检测放电时间的准确性。必要时,用户可以纠正放电时间的自动检测,并使用更新的分离向量重新计算运动单元脉冲串。在此,我们提供了一个开源软件和教程,指导用户 (i) 分解算法的参数和步骤,以及 (ii) 手动编辑运动单元脉冲串。此外,我们还提供了通过表面电极网格和肌肉内电极阵列记录的模拟和实验肌电信号,以对 MUedit 的性能进行基准测试。最后,我们讨论了盲源分离法在研究肌肉强直收缩时运动单元行为方面的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
70
审稿时长
74 days
期刊介绍: Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信