Few-shot Tumor Bud Segmentation Using Generative Model in Colorectal Carcinoma.

Ziyu Su, Wei Chen, Preston J Leigh, Usama Sajjad, Shuo Niu, Mostafa Rezapour, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi
{"title":"Few-shot Tumor Bud Segmentation Using Generative Model in Colorectal Carcinoma.","authors":"Ziyu Su, Wei Chen, Preston J Leigh, Usama Sajjad, Shuo Niu, Mostafa Rezapour, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi","doi":"10.1117/12.3006418","DOIUrl":null,"url":null,"abstract":"<p><p>Current deep learning methods in histopathology are limited by the small amount of available data and time consumption in labeling the data. Colorectal cancer (CRC) tumor budding quantification performed using H&E-stained slides is crucial for cancer staging and prognosis but is subject to labor-intensive annotation and human bias. Thus, acquiring a large-scale, fully annotated dataset for training a tumor budding (TB) segmentation/detection system is difficult. Here, we present a DatasetGAN-based approach that can generate essentially an unlimited number of images with TB masks from a moderate number of unlabeled images and a few annotated images. The images generated by our model closely resemble the real colon tissue on H&E-stained slides. We test the performance of this model by training a downstream segmentation model, UNet++, on the generated images and masks. Our results show that the trained UNet++ model can achieve reasonable TB segmentation performance, especially at the instance level. This study demonstrates the potential of developing an annotation-efficient segmentation model for automatic TB detection and quantification.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12933 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current deep learning methods in histopathology are limited by the small amount of available data and time consumption in labeling the data. Colorectal cancer (CRC) tumor budding quantification performed using H&E-stained slides is crucial for cancer staging and prognosis but is subject to labor-intensive annotation and human bias. Thus, acquiring a large-scale, fully annotated dataset for training a tumor budding (TB) segmentation/detection system is difficult. Here, we present a DatasetGAN-based approach that can generate essentially an unlimited number of images with TB masks from a moderate number of unlabeled images and a few annotated images. The images generated by our model closely resemble the real colon tissue on H&E-stained slides. We test the performance of this model by training a downstream segmentation model, UNet++, on the generated images and masks. Our results show that the trained UNet++ model can achieve reasonable TB segmentation performance, especially at the instance level. This study demonstrates the potential of developing an annotation-efficient segmentation model for automatic TB detection and quantification.

利用生成模型对结直肠癌中的少量肿瘤芽进行分割
目前组织病理学中的深度学习方法受限于可用数据量小和标注数据耗时长。使用 H&E 染色切片进行的结直肠癌(CRC)肿瘤萌发量化对癌症分期和预后至关重要,但却受到劳动密集型标注和人为偏差的影响。因此,获取大规模、完全注释的数据集来训练肿瘤萌发(TB)分割/检测系统非常困难。在这里,我们提出了一种基于 DatasetGAN 的方法,该方法可以从适量的未标注图像和少量已标注图像中生成数量不限的带有 TB 掩膜的图像。我们的模型生成的图像与 H&E 染色切片上的真实结肠组织非常相似。我们通过在生成的图像和掩膜上训练下游分割模型 UNet++ 来测试该模型的性能。结果表明,经过训练的 UNet++ 模型可以实现合理的结核病分割性能,尤其是在实例级别。这项研究证明了开发注释效率高的分割模型用于结核病自动检测和量化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信