A multi-objective optimisation approach for the linear modelling of cerebral autoregulation system

IF 2 4区 生物学 Q2 BIOLOGY
Felipe-Andrés Bello-Robles , Manuel Villalobos-Cid , Max Chacón , Mario Inostroza-Ponta
{"title":"A multi-objective optimisation approach for the linear modelling of cerebral autoregulation system","authors":"Felipe-Andrés Bello-Robles ,&nbsp;Manuel Villalobos-Cid ,&nbsp;Max Chacón ,&nbsp;Mario Inostroza-Ponta","doi":"10.1016/j.biosystems.2024.105231","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><p>Dynamic cerebral autoregulation (dCA) has been addressed through different approaches for discriminating between normal and impaired conditions based on spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CF). This work presents a novel multi-objective optimisation (MO) approach for finding good configurations of a cerebrovascular resistance-compliance model.</p></div><div><h3>Methods:</h3><p>Data from twenty-nine subjects under normo and hypercapnic (5% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in air) conditions was used. Cerebrovascular resistance and vessel compliance models with ABP as input and CF velocity as output were fitted using a MO approach, considering fitting Pearson’s correlation and error.</p></div><div><h3>Results:</h3><p>MO approach finds better model configurations than the single-objective (SO) approach, especially for hypercapnic conditions. In addition, the Pareto-optimal front from the multi-objective approach enables new information on dCA, reflecting a higher contribution of myogenic mechanism for explaining dCA impairment.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"241 ","pages":"Article 105231"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001163","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective:

Dynamic cerebral autoregulation (dCA) has been addressed through different approaches for discriminating between normal and impaired conditions based on spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CF). This work presents a novel multi-objective optimisation (MO) approach for finding good configurations of a cerebrovascular resistance-compliance model.

Methods:

Data from twenty-nine subjects under normo and hypercapnic (5% CO2 in air) conditions was used. Cerebrovascular resistance and vessel compliance models with ABP as input and CF velocity as output were fitted using a MO approach, considering fitting Pearson’s correlation and error.

Results:

MO approach finds better model configurations than the single-objective (SO) approach, especially for hypercapnic conditions. In addition, the Pareto-optimal front from the multi-objective approach enables new information on dCA, reflecting a higher contribution of myogenic mechanism for explaining dCA impairment.

大脑自动调节系统线性建模的多目标优化方法。
目的:根据动脉血压(ABP)和脑血流量(CF)的自发波动,动态脑自动调节(dCA)通过不同的方法来区分正常和受损状态。本研究提出了一种新颖的多目标优化(MO)方法,用于寻找脑血管阻力-顺应性模型的良好配置:方法:使用了 29 名受试者在正常和高碳酸血症(5% CO2 空气)条件下的数据。使用 MO 方法拟合了以 ABP 为输入、CF 速度为输出的脑血管阻力和血管顺应性模型,并考虑了拟合皮尔逊相关性和误差:结果:MO 方法比单目标(SO)方法找到了更好的模型配置,尤其是在高碳酸血症条件下。此外,多目标方法的帕累托-极值前沿为 dCA 提供了新的信息,反映了肌源性机制在解释 dCA 损伤方面的更大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信