Felipe-Andrés Bello-Robles , Manuel Villalobos-Cid , Max Chacón , Mario Inostroza-Ponta
{"title":"A multi-objective optimisation approach for the linear modelling of cerebral autoregulation system","authors":"Felipe-Andrés Bello-Robles , Manuel Villalobos-Cid , Max Chacón , Mario Inostroza-Ponta","doi":"10.1016/j.biosystems.2024.105231","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><p>Dynamic cerebral autoregulation (dCA) has been addressed through different approaches for discriminating between normal and impaired conditions based on spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CF). This work presents a novel multi-objective optimisation (MO) approach for finding good configurations of a cerebrovascular resistance-compliance model.</p></div><div><h3>Methods:</h3><p>Data from twenty-nine subjects under normo and hypercapnic (5% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in air) conditions was used. Cerebrovascular resistance and vessel compliance models with ABP as input and CF velocity as output were fitted using a MO approach, considering fitting Pearson’s correlation and error.</p></div><div><h3>Results:</h3><p>MO approach finds better model configurations than the single-objective (SO) approach, especially for hypercapnic conditions. In addition, the Pareto-optimal front from the multi-objective approach enables new information on dCA, reflecting a higher contribution of myogenic mechanism for explaining dCA impairment.</p></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"241 ","pages":"Article 105231"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001163","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
Dynamic cerebral autoregulation (dCA) has been addressed through different approaches for discriminating between normal and impaired conditions based on spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CF). This work presents a novel multi-objective optimisation (MO) approach for finding good configurations of a cerebrovascular resistance-compliance model.
Methods:
Data from twenty-nine subjects under normo and hypercapnic (5% CO in air) conditions was used. Cerebrovascular resistance and vessel compliance models with ABP as input and CF velocity as output were fitted using a MO approach, considering fitting Pearson’s correlation and error.
Results:
MO approach finds better model configurations than the single-objective (SO) approach, especially for hypercapnic conditions. In addition, the Pareto-optimal front from the multi-objective approach enables new information on dCA, reflecting a higher contribution of myogenic mechanism for explaining dCA impairment.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.