Adjustment of scan delay for bolus tracking with cardiothoracic ratio of CT scout image for hepatic artery phase of hepatic dynamic CT.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiological Physics and Technology Pub Date : 2024-09-01 Epub Date: 2024-05-17 DOI:10.1007/s12194-024-00814-w
Koji Muroga, Kanta Kitahara
{"title":"Adjustment of scan delay for bolus tracking with cardiothoracic ratio of CT scout image for hepatic artery phase of hepatic dynamic CT.","authors":"Koji Muroga, Kanta Kitahara","doi":"10.1007/s12194-024-00814-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to determine the scan delay for bolus tracking in the hepatic artery phase (HAP) of hepatic dynamic computed tomography (CT) using the cardiothoracic ratio (CTR) from CT scout images. We retrospectively studied 188 patients who underwent hepatic dynamic CT, 24 of whom had scan delays adjusted for CTR. The contrast enhancement of the abdominal aorta, portal vein, hepatic vein, and hepatic parenchyma was calculated for HAP. The adequacy of the scan timing for HAP was assessed using three classifications: early, appropriate, or late. The effect of HAP on scan timing adequacy was determined using multivariate logistic regression analysis, and the optimal cutoff value of CTR was evaluated using receiver operating characteristic analysis. The trigger times for bolus tracking (odds ratio: 1.58) and CTR (odds ratio: 1.23) were significantly affected by the appropriate scan timing of the HAP. The optimal cutoff value of CTR was 59.3%. The scan timing of HAP with a scan delay of 15 s was 14% of early and 86% of appropriate, and the proportion of early in CTR ≥ 60% (early, 52%; appropriate, 48%) was higher than that in CTR < 60% (early, 6%; appropriate, 94%). Adjusting the scan delay to 20 s in CTR ≥ 60% increased the proportion of appropriate (early, 4%; appropriate, 96%). The CTR of a CT scout image is an effective index for determining the scan delay for bolus tracking. Adjusting the scan delay by CTR can provide appropriate HAP images in more patients. Trial registration number: R-080; date of registration: 9 March 2023, retrospectively registered.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"651-657"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00814-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to determine the scan delay for bolus tracking in the hepatic artery phase (HAP) of hepatic dynamic computed tomography (CT) using the cardiothoracic ratio (CTR) from CT scout images. We retrospectively studied 188 patients who underwent hepatic dynamic CT, 24 of whom had scan delays adjusted for CTR. The contrast enhancement of the abdominal aorta, portal vein, hepatic vein, and hepatic parenchyma was calculated for HAP. The adequacy of the scan timing for HAP was assessed using three classifications: early, appropriate, or late. The effect of HAP on scan timing adequacy was determined using multivariate logistic regression analysis, and the optimal cutoff value of CTR was evaluated using receiver operating characteristic analysis. The trigger times for bolus tracking (odds ratio: 1.58) and CTR (odds ratio: 1.23) were significantly affected by the appropriate scan timing of the HAP. The optimal cutoff value of CTR was 59.3%. The scan timing of HAP with a scan delay of 15 s was 14% of early and 86% of appropriate, and the proportion of early in CTR ≥ 60% (early, 52%; appropriate, 48%) was higher than that in CTR < 60% (early, 6%; appropriate, 94%). Adjusting the scan delay to 20 s in CTR ≥ 60% increased the proportion of appropriate (early, 4%; appropriate, 96%). The CTR of a CT scout image is an effective index for determining the scan delay for bolus tracking. Adjusting the scan delay by CTR can provide appropriate HAP images in more patients. Trial registration number: R-080; date of registration: 9 March 2023, retrospectively registered.

在肝脏动态 CT 的肝动脉阶段,利用 CT 扫描图像的心胸比率调整栓子追踪的扫描延迟。
本研究旨在利用 CT 扫描图像中的心胸比(CTR)确定肝动态计算机断层扫描(CT)肝动脉期(HAP)栓子追踪的扫描延迟。我们回顾性研究了 188 位接受肝动态 CT 检查的患者,其中 24 位患者的扫描延迟根据 CTR 进行了调整。我们计算了腹主动脉、门静脉、肝静脉和肝实质的造影剂增强情况,以得出 HAP。针对 HAP 的扫描时间充分性采用三种分类方法进行评估:早期、适当或晚期。使用多变量逻辑回归分析确定了 HAP 对扫描时机充分性的影响,并使用接收器操作特征分析评估了 CTR 的最佳临界值。栓剂跟踪的触发时间(几率比:1.58)和 CTR 的触发时间(几率比:1.23)受到 HAP 适当扫描时间的显著影响。CTR 的最佳临界值为 59.3%。扫描延迟 15 秒的 HAP 扫描时间,早期占 14%,适当占 86%,CTR ≥ 60% 的早期比例(早期,52%;适当,48%)高于 CTR ≥ 60% 的适当比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信