Combination of percutaneous thermal ablation and adoptive Th9 cell transfer therapy against non-small cell lung cancer.

IF 9.4 1区 医学 Q1 HEMATOLOGY
Hanbo Pan, Yu Tian, Siyu Pei, Wanlin Yang, Yanyang Zhang, Zenan Gu, Hongda Zhu, Ningyuan Zou, Jiaqi Zhang, Long Jiang, Yingjie Hu, Shengping Shen, Kai Wang, Haizhen Jin, Ziming Li, Yanyun Zhang, Yichuan Xiao, Qingquan Luo, Hui Wang, Jia Huang
{"title":"Combination of percutaneous thermal ablation and adoptive Th9 cell transfer therapy against non-small cell lung cancer.","authors":"Hanbo Pan, Yu Tian, Siyu Pei, Wanlin Yang, Yanyang Zhang, Zenan Gu, Hongda Zhu, Ningyuan Zou, Jiaqi Zhang, Long Jiang, Yingjie Hu, Shengping Shen, Kai Wang, Haizhen Jin, Ziming Li, Yanyun Zhang, Yichuan Xiao, Qingquan Luo, Hui Wang, Jia Huang","doi":"10.1186/s40164-024-00520-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4<sup>+</sup> effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment.</p><p><strong>Methods: </strong>The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model.</p><p><strong>Results: </strong>We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8<sup>+</sup> T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8<sup>+</sup> T cells in mice with tumor lung metastasis and induces peripheral CD8<sup>+</sup> T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1β and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1β signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models.</p><p><strong>Conclusions: </strong>Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"13 1","pages":"52"},"PeriodicalIF":9.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00520-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment.

Methods: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model.

Results: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1β and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1β signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models.

Conclusions: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.

经皮热消融与Th9细胞转移疗法联合治疗非小细胞肺癌。
背景:非小细胞肺癌(NSCLC非小细胞肺癌(NSCLC)是全球最主要的恶性肿瘤之一。经皮热消融术(PTA)已在非小细胞肺癌患者中得到广泛应用,它有可能引起免疫反应,但对晚期疾病的疗效有限。9型T辅助细胞(Th9)是CD4+效应T细胞的一个亚群,具有强大而持久的抗肿瘤作用。本研究提出开发 PTA-Th9 细胞综合疗法,作为治疗 NSCLC 的潜在策略:方法:在皮下移植、复发或肺转移性肿瘤小鼠模型中测定疗效。流式细胞术评估了肿瘤微环境(TMEs)。细胞因子水平通过 ELISA 进行评估。信号分子通过定量 PCR 和 Western 印迹法测定。在人源化 NSCLC 患者异种移植(PDX)模型中测试了转化潜力:结果:我们发现,PTA 与 Th9 细胞转移疗法相结合可大幅抑制肿瘤生长、复发和肺转移,最终延长 NSCLC 移植小鼠的生存期,其效果优于 PTA 和 Th9 细胞转移单药疗法。对TMEs的分析表明,组合疗法能显著增强肿瘤浸润的Th9细胞,提高CD8+ T细胞的抗肿瘤效应,重塑肿瘤免疫抑制微环境。此外,在肿瘤肺转移的小鼠中,组合疗法还能明显增强 CD8+ T 细胞的区域和循环免疫反应,并在肿瘤复发的小鼠中诱导外周 CD8+ T 效应记忆细胞。从机理上讲,PTA 主要通过上调白细胞介素(IL)-1β,继而激活下游 STAT1/IRF1 通路来增强 Th9 细胞的抗肿瘤能力。最后,在人源化NSCLC PDX模型中验证了组合疗法的增强治疗效果:总之,这项研究表明,组合疗法具有强大而持久的抗肿瘤疗效和良好的转化潜力,具有良好的转化前景,是一种治疗 NSCLC 的有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信