Weiqing Qiu, Li Zhao, Hua Liu, Ping Xu, Changlin Qian
{"title":"Hypoxia-induced NOS1 as a therapeutic target in hypercholesterolemia-related colorectal cancer.","authors":"Weiqing Qiu, Li Zhao, Hua Liu, Ping Xu, Changlin Qian","doi":"10.1186/s40170-024-00338-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is well established that hypercholesterolemia increases the risk of atherosclerosis, especially because it reduces the availability of nitric oxide (NO). However, the relationship between hypercholesterolemia and NO in regulating colorectal cancer development and progression remains unknown.</p><p><strong>Methods: </strong>We conducted bioinformatics analysis, qRT-PCR, ChIP-qPCR assays, luciferase report assays, clonogenic survival assays, and multiple mouse models to investigate the function and mechanism of hypercholesterolemia in regulating NO signaling. Additionally, NOS inhibitors were used to evaluate the potential of therapeutic strategy in anti-tumor response.</p><p><strong>Results: </strong>Here, we show that oxidized low-density lipoprotein (oxLDL) cholesterol and its receptor LOX-1 are essential for hypercholesterolemia-induced colorectal tumorigenesis. Mechanically, the oxLDL promotes the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NO synthase (NOS) especially NOS1 expression in colorectal cancer (CRC) cells. More importantly, our results suggested that selective inhibition of NOS1 with its specific inhibitor Nω-Propyl-L-arginine is a suitable therapeutic strategy for hypercholesterolemia-related CRC with both efficacy and toxicity reduction.</p><p><strong>Conclusions: </strong>Our findings established that hypercholesterolemia induces the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NOS1 expression in CRC cells, and the clinically applicable NOS1 inhibitor Nω-Propyl-L-arginine represents an effective therapeutic strategy for hypercholesterolemia-related CRC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"14"},"PeriodicalIF":6.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-024-00338-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: It is well established that hypercholesterolemia increases the risk of atherosclerosis, especially because it reduces the availability of nitric oxide (NO). However, the relationship between hypercholesterolemia and NO in regulating colorectal cancer development and progression remains unknown.
Methods: We conducted bioinformatics analysis, qRT-PCR, ChIP-qPCR assays, luciferase report assays, clonogenic survival assays, and multiple mouse models to investigate the function and mechanism of hypercholesterolemia in regulating NO signaling. Additionally, NOS inhibitors were used to evaluate the potential of therapeutic strategy in anti-tumor response.
Results: Here, we show that oxidized low-density lipoprotein (oxLDL) cholesterol and its receptor LOX-1 are essential for hypercholesterolemia-induced colorectal tumorigenesis. Mechanically, the oxLDL promotes the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NO synthase (NOS) especially NOS1 expression in colorectal cancer (CRC) cells. More importantly, our results suggested that selective inhibition of NOS1 with its specific inhibitor Nω-Propyl-L-arginine is a suitable therapeutic strategy for hypercholesterolemia-related CRC with both efficacy and toxicity reduction.
Conclusions: Our findings established that hypercholesterolemia induces the oxidant stress-dependent induction of hypoxia signaling to transcriptionally up-regulate NOS1 expression in CRC cells, and the clinically applicable NOS1 inhibitor Nω-Propyl-L-arginine represents an effective therapeutic strategy for hypercholesterolemia-related CRC.
期刊介绍:
Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.