Exploring structural engineering approach to formulate and characterize next-generation adjuvants.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Aditi Rattan, Takhellambam Malemnganba, Sagar, Vijay Kumar Prajapati
{"title":"Exploring structural engineering approach to formulate and characterize next-generation adjuvants.","authors":"Aditi Rattan, Takhellambam Malemnganba, Sagar, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.12.020","DOIUrl":null,"url":null,"abstract":"<p><p>It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"140 ","pages":"59-90"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.12.020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.

探索结构工程方法,配制和表征下一代佐剂。
必须强调接种疫苗的重要性,因为它能保护我们免受有害病原体的侵害。尽管疫苗研发工作取得了重大进展,但我们仍需不断研发不仅安全,而且能有效预防严重感染的疫苗。亚单位疫苗通常是安全的,但它们经常无法引起强烈的免疫反应。因此,有必要通过将亚基疫苗与佐剂结合来提高疫苗的有效性,因为佐剂有可能成倍地增强免疫系统。开发这些佐剂的过程需要寻找能够激活免疫系统的分子,将这些有前景的化合物与抗原结合,然后用动物模型对这种组合进行测试,最后批准用于临床。脂质体佐剂是一种递送佐剂,其活性取决于某些参数,如表面电荷、囊泡大小、表面修饰和给药途径。肽佐剂的自组装特性和混合肽的发现拓宽了肽在疫苗配方中的应用范围。由于大多数致病分子并非基于多肽,噬菌体展示技术可以筛选出具有佐剂潜力的多肽模拟物。本章将讨论基于肽和脂质体的佐剂,重点是它们赋予佐剂性的特性以及配制方法。本章还讨论了佐剂表征方法,这些方法对于佐剂获准用于临床试验非常重要。这些方法包括细胞毒性、T淋巴细胞增殖、树突状细胞成熟、细胞因子和抗体产生、依赖于收费样受体的信号传导和佐剂半衰期的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信